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Abstract

The Laurentian Great Lake, Lake Erie is an invaluable global resource and its
watershed is home to over 11 million people. The pressures placed on the lake
because of this high population caused Lake Erie to experience numerous
environmental problems, including seasonal hypoxia and harmful algal blooms.
While these topics have been widely studied in Lake Erie for over 40 years a more
nuanced understanding of the interaction between phytoplankton and nutrient is
needed to properly address the problems continuing to face the lake. In this study
we combine classical limnological and cell growth experiments with modern
molecular biological techniques and microscopy to more completely describe the
aquatic microbial ecology of the lake.

We used an oxalate rinse technique to examine the surface absorbed P pool
of the toxic cyanobacterium Microcystis aeruginosa grown under a range of P
conditions, as well as the general Lake Erie plankton assemblage. Our results
suggest that while Microcystis is plastic in its cellular P needs, the ratio of
intracellular to extracellular P remains stable across growth conditions. We describe
the effect of the phosphonate herbicide glyphosate on the Lake Erie phytoplankton
community using laboratory cell growth studies, field microcosm experiments and
PCR amplification of a gene implicated in the breakdown of this compound from the
environment. Results from these experiments suggest that the presence of
glyphosate can affect community structure in multiple ways and may explain areas
of unexplained phytoplankton diversity in coastal areas of Lake Erie. We also show
heterotrophic bacteria are likely critical to the breakdown of glyphosate and further
illustrate that understanding the context of the larger microbial community is
critical to understanding the ecology of the constituent members of the community.
Finally, we investigate the activity of the phytoplankton community in winter
months with a focus on diatoms abundant in Lake Erie under the ice. We show these
diatoms are active and that the winter bloom is a likely source of carbon important
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to seasonal hypoxia formation. Together, these studies significantly enrich our
understanding of how phytoplankton influence important ecological processes in

Lake Erie.
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SECTION I

LITERATURE REVIEW



General Introduction to the Great Lakes and Lake Erie

The Laurentian Great Lakes are an unparalleled natural resource. Together
these lakes comprise one -fifth of the surface freshwater in the world, over 22,684
km3 total draining over 521,830 km? of land in the United States and Canada (Fuller,
1995). The Great Lakes system is comprised of five large lakes, their drainage
basins and the river systems and several small lakes that connect the larger lakes to
each other. Among the Great Lakes, Lake Erie is of particular interest to the
international research community. Lake Erie is the shallowest and warmest (and
coldest) of the lakes, and as a result it is also the most productive biologically,
including a valuable fishery that drives tourism in the region.

Lake Erie (Fig. 1) is comprised of three distinct basins that function, for the
most part, as distinct lakes. The western basin is the shallowest and warmest; it is
usually dimictic, generally described as eutrophic, and has experienced algal blooms
throughout recent history. The central basin has the largest surface area and has a
maximum depth of 22m. This basin regularly becomes thermally stratified in the
summer, though the depth and topography of this region results in a relatively
shallow hypolimnion. The limited volume of the hypolimnion is a key factor in
hypoxia formation in the central basin, resulting in areas of low dissolved oxygen
(<2 mg 02 L'1) concentration. The eastern basin is the deepest of the three basins
and is generally classified as oligotrophic. The Lake Erie watershed supports the
largest population of all the Great Lakes at over 11,000,000 people (Fuller, 1995).
Lake Erie is a large complex ecosystem that has experienced substantial change in
the last 100 years and it also faces numerous serious problems currently, including

invasive species, hypoxia, legacy chemical contaminants, and harmful algal blooms.



Figure 1.1. MODIS satellite image of Lake Erie taken 10-13-10 (NOAA)



Lake Erie is limnologically characterized as a dimictic lake, experiencing full mixing
in the spring and fall with periods of thermal stratification in the summer and
winter (Wetzel, 2001). In this paradigm, the microbial community of ice covered
lakes is thought to be dormant (Agbeti and Smol, 1995). Due to the difficulties and
dangers associated with large-lake limnology during the winter, studies
investigations of Lake Erie during the winter have been rare. This dearth of recent
studies examining the lake in the winter has led to the assumption that, similar to
small ice covered lakes, Lake Erie is dormant in the winter. The previous studies of
Lake Erie phytoplankton in the winter suggest the lake may be more active than
assumed, with abundant diatoms observed in the western basin (Chandler, 1940;
Holland, 1993). Indeed, a recent study confirmed the presence of a winter diatom
community measuring high abundances across the lake (Twiss et al., 2010). The
centric diatom Aulacoseira islandica is especially plentiful, with measured
abundances as high as 4.93 x 10° cells L-1. Notably, while phytoplankton are
abundant and apparently active in the winter, heterotrophic bacteria are less active
in the winter than in the summer (Wilhelm and Bullerjahn, unpublished). The
combination of a high abundance phytoplankton community and low bacterial
activity may result in the export of large amounts of carbon to the lake bottom,
potentially influencing the formation of hypoxia. This prospect warrants further
investigation, requiring study of both the winter phytoplankton and bacterial

communities.

Human Impacts on Lake Erie: Eutrophication, Restoration and Invasion

Starting at the turn of the 19t century, the Lake Erie basin has been an
important industrial and agricultural center of the United States and Canada. The
permissive environmental controls of this era led to high levels of industrial and
agricultural pollution contaminating the lake. Much of the pollution took the form of
chemical contaminates. These contaminants included heavy metals, notably

mercury, lead and copper, and organic chemicals such as polychlorinated biphenols
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and polycyclic aromatic hydrocarbons (Marvin et al., 2004a; Marvin et al., 2004b;
Marvin et al., 2004c). The state of chemical pollutants in the lake was typified by
several instances in which the waters of a major tributary, the Cuyahoga River,
caught fire (Stradling and Stradling, 2008).

Nutrient loading from agricultural, industrial, and sewage runoff led to
eutrophication across Lake Erie, severely impacting in the ecology of the lake in
several important ways. First, and most obviously, high dissolved nutrient levels
supported large-scale algal blooms. These blooms were comprised of several
nuisance algae including the diazatrophic cyanobacteria Aphanizomenon spp. and
Anabaena spp., as well as the diatoms Stephanodiscus spp. and Fragilaria spp.
(Davis, 1964; Makarewicz, 1993). High phosphorus loading during this period is
usually understood to be the main driver of this increase in algal production (IJC,
1989). Lake phosphorus loads increased substantially in this period from 4000
metric tons in 1900 to 27,000 metric tons in 1970 (Sly, 1976). Nitrogen inputs did
not increase at the same pace at this time resulting in a substantial shift in N:P ratio,
from 35 to 9.2 between 1948 and 1962 (Sweeney, 1993).

A consequence of high algal biomass production during this period was the
expansion of hypoxia in the central basin. Due to lake morphology and the relatively
small volume of the hypolimnion during stratification, regions of hypoxia have been
known to occur in the central basin of Lake Erie prior to eutrophication of the lake
(Charlton, 1980; Rosa and Burns, 1987). The scope and severity of hypoxic events
in the central basin increased upon the onset of eutrophication, growing in size from
300 km? in 1930 to over 10,000 km? (70% of the central basin) in the mid- 1970s
(Herdendorf, 1980) with oxygen depletion rates increasing significantly between
1930 and 1980 (Rosa and Burns, 1987). Hypoxia in the lake had serious effects on
lake ecology, starving benthic invertebrates and fish populations of O; and

decimating their populations (Britt, 1955; Krieger, 1984).



Eutrophication and the deterioration of water quality in Lake Erie continued
until the accumulation of problems led to the declaration in the popular press that
the lake was “dead” (Sweeney, 1993). The resulting publicity for the degeneration
of the Lake Erie ecosystem was a major driver for the formation of the International
Joint Commission (IJC), which was tasked with advising the governments of the
United States and Canada of the causes of the lake’s problems and the most prudent
path to restoration. Due in large part to Schindler’s (1974) work identifying the
influence of phosphorus loading in the eutrophication of freshwater, controls on
point-source loading (such as industrial waste and sewage) of P to Lake Erie were
instituted. A goal of limiting P loads to no more than 11,000 metric tons was set
forth in the Great Lakes Water Quality Agreement (GLWQA) of 1972. Efforts to
lower phosphorus loads, largely through the control of phosphate containing
detergents, in Lake Erie were successful with loads dropping below the level set in
the GLWQA (IJC, 1989) and dissolved phosphorus in the lake dropping with it
(Bertram, 1993; Rosa, 1987). Consequently, improvements were observed in many
indicators of lake health (Makarewicz and Bertram, 1991), including rebounds in
the populations of important sport fish (Kutkuhn, 1976; Ludsin et al., 2001) and
benthic invertebrates (Krieger, 1984). Phytoplankton blooms in the lake also
abated following the implementation of phosphorus load limits (Nicholls et al,,
1977), with marked biomass reduction in all basins, including a drop from 2.3 g
phytoplankton biomass m-3in the Eastern Basin in 1970 to 0.2 g m-3 in 1987
(Makarewicz, 1993). Eutrophic indicator species present from the 1950s through
the early 70s showed significant reductions in abundance. For example,
Aphanizomenon flos-aquae biomass dropped 92% in the western basin,
Stephanodiscus niagarae showed over a 90% drop in the eastern and central basins,
and Fragilaria crotonensis biomass reduced over 90% in all three Lake Erie basins
(Makarewicz, 1993; Munawar and Munawar, 1976). Together these reductions in
phytoplankton biomass were indicative of an overall improvement in the health of

Lake Erie. Despite the significant progress in ecosystem health and water quality,
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two important indicators of progress in Lake Erie health have not improved.
Hypolimnetic oxygen demand and phosphorus release from the sediments have not
improved since 1972 (Burns et al., 2005; Charlton, 1980; Charlton et al., 1993).

The next significant ecological event in Lake Erie was the introduction of
Dreissenid (zebra and quagga) mussels in 1988. These filter-feeding bivalves are
common in European waters and are believed to have arrived via the ballast water
of seagoing vessels. They were first documented in Lake St. Clair in September 1988
and by 1990 mussels were reported to be present in all of the Great Lakes (Griffiths
et al, 1991). The ecological impact of Dreissenid mussels on the Lake Erie ecosystem
has been reviewed (Dermott and Munawar, 1993; Ludyanskiy et al., 1993).
Dreissenid mussel filtration of the water column effects the environment in multiple
ways. Mussels clear the water of particulate matter, allowing for light to penetrate
deeper into the water column, effecting phytoplankton growth. Mussels have also
been shown to affect lake nutrient chemistry by excreting more phosphorus than
nitrogen, lowering the N:P ratio of the water body and potentially favoring the
formation of cyanobacterial blooms (Arnott and Vanni, 1996; Conroy et al., 2005a).

Despite the apparent success of phosphorus control measures in limiting
algal blooms, large blooms returned to the western basin of Lake Erie in 1995. In
contrast to the blooms of eutrophic Lake Erie, which were primarily heterocyst-
forming filamentous cyanobacteria, the blooms of the 1990s to today are largely
composed of the colonial cyanobacteria Microcystis spp. (Brittain et al., 2000).
Microcystis blooms are of concern not only for the fouling effects normally
associated with cyanobacterial blooms, but also because this organism produces a
hepatotoxic secondary metabolite, microcystin (Carmichael, 2001). Studies
investigating the distribution of toxin-producing Microcystis have shown these
organisms to be distributed across the lake (Ouellette et al., 2006; Rinta-Kanto et al,,
2005). Though not a primary member of the phytoplankton assemblage of the
eutrophic lake in the 1970s (Makarewicz, 1993), Microcystis was present, and was

likely the primary producer of microcystin in Lake Erie during the 1970s (Rinta-
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Kanto et al,, 2009). It is not yet clear why these blooms occur, though the influence
of Dreissenid mussels on Microcystis abundance has been extensively studied
(Conroy et al., 2005a; Conroy et al., 2005b; Makarewicz et al., 1999; Vanderploeg et
al,, 2001)

A surprising result of surveys exploring the distribution of toxic Microcystis
in Lake Erie was the discovery of areas in which high concentrations of microcystin
toxin could be measured, but no toxic Microcystis could be identified, such as
Sandusky Bay OH (Rinta-Kanto et al., 2005). Further investigation revealed that the
filamentous cyanobacterium Planktothrix spp. was responsible for microcystin
production in Sandusky Bay (Rinta-Kanto and Wilhelm, 2006). Other potentially
toxic cyanobacteria are also present in hypereutrophic Sandusky Bay, including the
recent identified invasive species Cylindrospermopsis spp (Conroy et al.,, 2007). Why
Planktothrix and other filamentous cyanobacteria are successful in embayments
whereas Microcystis is dominant elsewhere in the lake is not clear and warrants

further study.

Cyanobacterial harmful algal blooms - history and ecological impacts

Harmful algal blooms (HABs), the overgrowth of certain algal species to the
detriment to people and the environment, are a problem of worldwide scope and
importance These microbes and the toxins they produce have impacted human
health for much of recorded history. While there are numerous examples of HAB
organisms among the eukaryotic algae, including the brown tide former Aureococcus
anophagefferens (Gobler et al., 2002) and saxitoxin producing dinoflagellates
(Anderson et al,, 1990), HAB forming cyanobacteria represent a significant subset of
HAB microbes. While many cyanobacteria are indispensable parts of balanced
ecosystems, others are known for bloom formation and toxin production. Blooms
occur naturally, often in the form of common pond scums but some cyanobacterial
HABs are often also connected to anthropogenic sources such as industrial pollution

or agricultural nutrient runoff.



Toxic cyanobacterial HABs have been reported on every inhabited continent
making this a truly worldwide problem (Carmichael, 2001). Because of the obvious
discoloration of water during a cyanobacterial bloom and the importance of fresh
drinking water to life, it should be no surprise that cyanobacterial HABs have been
reported throughout history. Among the earliest reports of a toxic cyanobacterial
bloom is that of Chinese General Zu Ge-Ling whose troops fell ill after drinking green
water in southern China (Chorus and Bartram, 1999). In 1175 Scottish monks
named their home near Soulseat Loch Monasterium Viridis Stagni or Monastery of
the Green Loch. Soulseat Loch is currently noted for blooms of toxic cyanobacteria
Planktonthrix agardhii, including an event in 1994 that resulted in the loss of
livestock (Dybas, 2003).

Australia has been a site of algal bloom related activity throughout its
prehistory and history. Because Australia possesses a wide range of ecosystems,
from tropical regions to more temperate and desert regions, the cyanobacterial
threat is diverse and a variety of control strategies must be considered. Australian
aboriginals demonstrated an appreciation of the presence of HAB organisms passing
water through crude sand filters in an attempt to make it safe to drink (Heyman
1992). Australia also holds the distinction of being the site of the first toxic
cyanobacterial bloom to be recorded in the scientific literature. This account
describes an event in which livestock consumed water from Lake Alexandria in
which the toxic cyanobacteria of the genus Nodularia spp. had bloomed, resulting in
the death of the animals (Francis, 1878). A high profile example of the effect of HABs
in Australia is the 1979 case of the Palm Island Mystery Disease. In this incident
over 100 aboriginal children were admitted to the hospital showing various
gastroenterological symptoms (Griffiths and Saker, 2003). Subsequent investigation
revealed that the regional water source had experienced a bloom of the highly toxic

cyanobacterial genus Cylindrospermopsis.



While there is controversy today as to whether the illness was caused by the
cyanobacteria themselves or by the treatment of the water with copper sulfide
aimed at killing the bloom, it can be agreed that this event illustrates the potential
effects of HABs and the importance of considering the possible outcomes of
treatment plans before they are used.

Modern study of cyanobacterial HABs has focused on taxa capable of
producing toxic secondary metabolites. Toxic cyanobacteria are morphologically,
genetically and metabolically diverse. They can be found in coccoid and a variety of
filamentous forms; some are able to form heterocysts and fix atmospheric nitrogen
and they are able to produce a variety of toxins. Interestingly, many genera of toxic
cyanobacteria are able to produce multiple different types of toxin (Carmichael,
1997, 2001). A wide variety of cyanobacterial toxins have been described, including
neurotoxins (anatoxin), hepatoptoxins (microcystin, nodularin,
cylindrospermopsin), and dermaltoxins (lyngbyatoxin) (Carmichael, 2001). The
physiological role of these compounds for the microbes that produce them is poorly
understood. The toxins do not appear to be required for growth because strains of
every potentially toxic genus exist that do not posses the genes necessary for toxin
production (Zurawell et al.,, 2005). In fact, it has been observed that generally non-
toxic individual cells outnumber toxic individuals, suggesting a high physiological

cost for toxin production (Rinta-Kanto et al., 2005).

Eutrophication in freshwater - are P limits enough to control algal blooms?
Eutrophication via nutrient loading is a primary cause of algal bloom
formation. Identification of phosphorus as a nutrient limiting algal growth in
freshwater (Schindler, 1974, 1977) and the control of phosphorus loads into
eutrophic bodies of water have been critically important to the rehabilitation of
many systems, including Lake Erie. These studies also assert that similar controls of
nitrogen loads are not necessary because nitrogen deficits can be compensated

through the activity of nitrogen-fixing microbes (Schindler et al., 2008). However, a
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growing body of evidence indicates that only controlling phosphorus inputs is not
sufficient to successfully control eutrophication (Conley et al., 2009; Paerl, 2009;
Paerl and Scott, 2010; Scott and McCarthy, 2010). Indeed, a recent study of an
extremely eutrophic Chinese lake, illustrated that the phytoplankton community in
this site were not limited by phosphorus alone but rather co-limited by phosphorus
and nitrogen (Xu et al,, 2010). As this debate continues, the return of algal blooms
to Lake Erie has drawn the success of P-only and the focus on point source controls
into question.

Analysis of P-input trends in Lake Erie tributaries gives insight into the effect
of non-point source loads. Non-point pollution comes from diffuse sources, such as
agricultural and urban runoff. Given that the land use of most of the Lake Erie
drainage basin is agricultural, as high as 80% in the Maumee River basin,
agricultural non-point sources such as fertilizers and pesticides are important.
While the drop in total P loads in the Maumee River that started in the 1970
continue today, dissolved reactive phosphorus (DRP) has gone up 94% from the
minimum recorded in the 1980s (Richards, 2009). It is interesting to note that the
recent increase in DRP started in the mid 1990s corresponding to the widespread

application of the herbicide glyphosate.

Glyphosate - mode of action and resistance

The phosphonate herbicide glyphosate (N-(phosphonomethyl)glycine) is the
primary active ingredient in Roundup™, and the most widely used chemical
herbicide globally (Baylis, 2000). Glyphosate has shown the ability to influence a
microbial community positively as a nutrient source and, indeed, P, C and N
mineralization from glyphosate by soil microbes has been observed (Dick and
Quinn, 1995; Lancaster et al,, 2010; Liu et al., 1991). Also, glyphosate has been
observed to affect a microbial community negatively, acting as a toxic compound.
The application of glyphosate has been observed to shift microbial community

structure in freshwater (Perez et al., 2007), shifting the community from
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glyphosate-sensitive green algae and diatoms to glyphosate-tolerant cyanobacteria.
Additionally, changes in microbial community structure upon glyphosate exposure
have been described in marine (Stachowski-Haberkorn et al., 2008) and soils
systems (Lancaster et al., 2010).

Glyphosate is a broad-spectrum herbicide that inhibits the synthesis of
aromatic amino acids acting on the enzyme 5-enol-pyruvylshikimate-3-phosphate
(EPSP) synthase (Amrhein et al., 1980; Steinrucken and Amrhein, 1980). This
enzyme promotes the transfer of an enolpyruvyl group from phosphoenolpyruvate
(PEP) to shikimate-3-phosphate (S3P). It has been shown that glyphosate binds the
PEP binding site, preventing the binding of this molecule to the enzyme. Glyphosate
does not prevent the binding of EPSP synthase to S3P; rather it facilitates the
creation of a S3P-EPSP synthase-glyphosate complex, precluding S3P and EPSP
synthase from further activity in the cell and blocking the shikimate pathway and
the biosynthesis of aromatic amino acids (Dill, 2005; Schonbrunn et al., 2001).

The development of plants that harbor glyphosate resistance, known as
Roundup Ready™ crops, has led to large increases in application levels (Fig. 2, Dill,
2005; Dill et al., 2008). Three types of genetic alterations have been used to attempt
to impart glyphosate resistance. First, glyphosate resistance has been engineered
through the modification of the EPSP synthase gene to produce a glyphosate
tolerant enzyme. This alteration has been accomplished through the modification of
the native EPSP synthase (Lebrun et al., 2003), or through the replacement of the
native EPSP synthase with an insensitive version of the gene . The glyphosate
insensitive EPSP synthase isolated from Agrobacterium spp. C4 is highly effective,
and is widely used in Roundup Ready™ crops.

Glyphosate resistance has also been imparted on plants through genes
encoding enzymes that are able to metabolize glyphosate. Two glyphosate
degradation pathways have been observed (Fig. 3), both resulting in the eventual

metabolism of the herbicide to phosphate, ammonia and carbon dioxide.
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One pathway begins with the metabolism of glyphosate to the intermediate
aminomethylphosphonic acid (AMPA). The gene encoding the enzyme responsible
for the N-C bond cleavage in this pathway is called glyphosate oxidoreductase (GOX)
and was initially isolated from Ochronobactrum anthropi strain LBAA (Barry and
Kishore, 1995; Pline-Srnic, 2006). GOX is commonly used commercially in conferring
glyphosate resistance. Little is known about its activity in nature, though nearly all
isolates known to posses the gene were obtained from glyphosate enrichments
(Borggaard and Gimsing, 2008). GOX also appears infrequently in currently available
metagenomic databases. As a result of the wide usage of GOX, AMPA is frequently
observed in agricultural runoff, often at concentrations higher than those observed
of glyphosate (Scribner et al., 2007).

The other known glyphosate metabolism pathway begins with the
production of a sarcosine intermediate through the metabolism of the C-P bond by
C-P lyase. A multi-gene system, C-P lyase has not been utilized commercially to
confer glyphosate resistance because of the effectiveness and simplicity of the single
gene glyphosate oxidoreductase. The C-P lyase system has been shown to be widely
distributed and important to microbial degradation of these compounds in nature
(Quinn et al,, 1989; Wanner and Boline, 1990). Originally described in E. coli, the C-P
lyase operon (phnC-P) in E. coli is a 10.4 kb multi-enzyme gene cluster under the
control of a low P-nduced Pho promoter and encodes two major functional units. An
ABC type phosphonate transporter is encoded by genes phnC-E, and phnG-M and
makes up the C-P lyase responsible for the cleavage of the C-P bond. This enzyme
has been show to be able to metabolize the C-P bond in many different phosphonate
compounds. Evidence of frequent horizontal gene transfer has been observed in this
gene cluster and gene order is not conserved between taxonomic groups, likely the
result of repeated rearrangements (Huang et al,, 2005).

Little is known about the specific mode of action of C-P lyase. A primary
reason for this lack of understanding is because activity has not been detected in

cell-free extracts in vitro, though this result suggests C-P lyase is associated with the

15



lipid bi-layer (Ternan et al., 1998). Also, the accumulation of gaseous alkene side
products from C-P lyase active cell culture suggests a radical based
dephosphorilation (Frost et al., 1987). Functions of some of the phn gene products
have been elucidated through crystal structure and amino acid sequence analysis.
The structure of phnH has been solved, though the function of this protein is still
inconclusive, though the results suggest this protein interacs with another phn
protein (Adams et al., 2008). Highly polar phnM has been proposed to be an the
membrane bound component of the C-P lyase (Metcalf and Wanner, 1993). Phn] is
among the most highly conserved of the genes in the phn operon, it has been
implicated in the metabolism of the C-P bond itself. Four conserved cystine residues
may be involved in the coordination of a metal ion or iron sulfur complex critical to
the suspected chemistry of C-P bond cleavage (Parker et al., 1999).

Much of our knowledge of glyphosate degradation in nature is based on what
is known about the metabolism of the phosphonate bond. Phosphonates occur
naturally, are common to the cell membrane components of many microbes
(Kononova and Nesmeyanova, 2002) and compose up to 25% of high molecular
weight P in marine systems (Clark et al., 1998; Kolowith et al., 2001). Phosphonate
metabolism and the presence of phn genes have been recorded in cyanobacteria
from freshwater and marine systems, specifically picocyanobacteria and
filamentous cyanobacteria (Dyhrman et al., 2006; Ilikchyan et al., 2009; Stucken et
al,, 2010). Other phosphonate metabolism enzymes have been identified, many of
which do not appear to be subject to the influence of exogenous P levels and are
specific to particular phosphonate substrates, such as (2)-aminoethylphosphonate

(Quinn et al., 2007).
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Glyphosate usage in the Lake Erie Basin

Predictably, because of high application levels in the Lake Erie basin,
glyphosate is present in measureable quantities in both tributaries and the main
body of the lake (Kannan et al.,, 2006; Struger et al., 2008). Glyphosate observation
in Lake Erie is transitory, with the highest concentrations being observed in
conjunction with spring and fall agricultural glyphosate application (Byer et al.,
2008, McKay and Bullerjahn, unpublished; Struger et al., 2008). At peak
concentration, glyphosate can constitute a significant proportion of P in Lake Erie or
its tributaries, ranging between 0.2-2% of total dissolved P in Maumee Bay and the
Maumee River (McKay and Bullerjahn unpublished). This lack of glyphosate
accumulation throughout the year is strongly indicative of microbial degradation of

this compound in Lake Erie and its watershed.
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OBJECTIVES OF STUDY

With the understanding that harmful algal bloom formation and seasonal hypoxia
are two of the most critical problems associated with the Lake Erie ecosystem, our
primary goal was to formulate and address a series of hypotheses that would enrich
the greater understanding of how microbial activity impacts these problems. A
secondary goal of the study was to utilize a wide variety of methods, combining
laboratory and field studies, genetic analysis, cell culture based experiments and a
variety of microscopic techniques. The use of a diversity of techniques allowed us to
independently corroborate our findings in each case. In this study, we address the
following hypotheses investigating how phytoplankton-nutrient interaction impact
critical processes in Lake Erie:

1. Surface-bound P represents a significant proportion of the total
cellular P pool in Microcystis and is potentially important to our
understanding of Microcystis lifestyle in the environment.

i. A parallel hypothesis is that, because previous cellular P
measurements in Microcystis do not account for surface
absorbed P, we have historically overestimated the P
requirement of Microcystis.

2. Glyphosate exerts influence on phytoplankton community structure in
Lake Erie, both through herbicidal effects on less tolerant members of
the community and as a nutrient source to those able to metabolize it
and its breakdown products.

3. The diatom assemblage observed in high concentrations in Lake Erie
in the winter is active, and these diatoms are active at rates
comparable to those observed in the summer and are producing
biomass at rates that potentially impact hypoxia formation in the
summer.
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Abstract

Blooms of the toxic cyanobacterium Microcystis are common and as a result
significant resources continue to be dedicated to monitoring and controlling these
events. Recent studies have shown that a significant proportion total cell-associated
phosphorus (P) in phytoplankton can be surface absorbed, and many of our current
measurements do not accurately reflect the P demands of these organisms. In this
study we measure the total cell-associated and intracellular P as well as growth
rates of two toxic strains of Microcystis aeruginosa Kiitz grown under a range of P
concentrations. The results show that the intracellular P pool in Microcystis
represents a percentage of total cell-associated P (50-90%) similar to what has been
reported for actively growing cells in marine systems. Intracellular P levels (39-147
fg cell'1) generally increased with increasing growth media P concentrations, but
growth rate and the ratio of total cell-associated to intracellular P remained
generally stable. Intracellular P quotas and growth rates in cells grown under the
different P treatments illustrate the ability of this organism to successfully respond
to changes in ambient P loads, and thus have implications for ecosystem scale

productivity models
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Introduction

Widespread nutrient loading has led to the eutrophication of fresh- and saltwater
ecosystems throughout the developed world. A primary concern linked to
eutrophication is the appearance of harmful algal blooms (HABs). HAB events are
well-documented, ecosystem-wide problems that can impact human health, kill
livestock, foul potable water supplies and compromise the integrity of both
recreational and commercial fisheries (Carmichael, 2001). HABs have also been
implicated in contributing to the formation of anoxic zones (Paerl et al., 1998).
HAB-causing organisms are very diverse, including prokaryotic and eukaryotic
algae; many cyanobacteria are particularly noted for bloom formation, especially in
fresh- and brackish water systems.

Efforts to limit algal bloom formation have historically focused on reducing
nutrient loading. Phosphorus (P) is understood to be the nutrient limiting
phytoplankton growth in most freshwater systems (Schindler, 1977; Schindler et al.,
2008). Controlling P has led to successes in controlling algal bloom formation in
extreme eutrophic systems (Makarewicz and Bertram, 1991). Studies have also
suggested that limiting nitrogen is important to controlling algal blooms, especially
in terms of cyanobacterial speciation (Conley et al., 2009; Paerl, 1997). This
developing understanding of eutrophication has been critical to the continued
development of mathematical environmental models, which have become
substantially more sophisticated with advances such as coupling hydrodynamic,
ecological and watershed models (Jgrgensen, 2010).

Microcystis spp. are among the most common bloom forming cyanobacteria
in freshwaters and have a global bloom distribution (Chorus and Bartram, 1999). It
is also known for the production of the hepatotoxin microcystin. The effects of P-
limitation and uptake in Microcystis have been extensively studied. Like other
cyanobacteria, Microcystis possesses the ability to store excess P intracellularly, as

polyphosphate granules, and P starved cells have higher rates of P uptake than P-
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sufficient cells (Jacobson and Halmann, 1982). Microcystis has been shown to
respond to P limitation by initial incomplete rapid P uptake and is known for a
notable increase in Vigxin P-limiting conditions (Kromkamp et al.,, 1989). The
recently sequenced Microcystis genomes indicate the presence of ATP driven P
uptake similar to what has been described in Synechococcus (Frangeul et al., 2008;
Kaneko et al.,, 2007; Ritchie et al., 1997, 2001).

Recently, an oxalate rinse developed to remove surface adsorbed iron
(Tovar-Sanchez et al., 2003) was shown to also effectively remove surface adsorbed
P (Fu etal., 2005; Sanudo -Wilhelmy et al., 2004). Subsequently these studies have
shown a significant proportion (15-45%) of total cell-associated P to be surface
adsorbed in marine cyanobacteria. Arguably, this phenomenon, if universal in
nature, is predicted to be of even greater relevance to freshwater ecosystems given
their more universal P-limited nature. A consequence of this is that previous
estimates of cyanobacterial P requirements may overstate the need for this nutrient.
Alternatively, the ability of cyanobacteria to store P on their exterior surface may act
as a novel strategy to allow persistence during periods of prolonged P deficiency (or
to survive “boom-and-bust” cycles of nutrient availability). As such, a necessary first
step is to determine the ability of cells to accumulate extracellular P and, further, to
determine the contribution of this pool to estimated total P quotas.

In this study we determined the total cell-associated and intracellular P
quotas and growth rates of two toxic Microcystis strains grown under a series of P
concentrations. We similarly examined the ratio of total cell associated to
intracellular P of natural communities in the western basin of Lake Erie where
Microcystis forms an important part of the endemic plankton assemblage.
Establishing accurate P-quotas (and their plasticity) for this potentially toxic bloom-
forming cyanobacterium is a necessary step toward the development of realistic
environmental phytoplankton growth models and management strategies for many

important freshwater systems.
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Materials and Methods

Cyanobacterial Culture Conditions.

Experiments were performed with M. aeruginosa PCC 7806 obtained from
the Pasteur Culture Collection. While M. aeruginosa PCC 7806 is a globally used type
strain, it is not representative of much of observed Microcystis diversity (Ouellette et
al,, 2006; Ouellette and Wilhelm, 2003; Ye et al,, 2009). M. aeruginosa LE3, an
isolate from Lake Erie (Brittain et al.,, 2000), has been shown to be representative of
Lake Erie Microcystis (e.g., Rinta-Kanto and Wilhelm, 2006) and has been used as a
standard in numerous studies (e.g., Rinta-Kanto et al., 2009b). Cultures were
maintained in BG-11 medium (Rippka et al,, 1979) with P concentrations ranging
from 1.75-175 uM KzHPO4. Cultures were grown in 50 mL glass culture tubes
(Kimble, Vineland, NJ) at 24° C under continuous illumination of ~30 pmol photons
m-2s-1. Prior to use, all culture tubes were soaked overnight in 1% HCI and rinsed
multiple times with MilliQ water. Samples were grown and transferred at
experimental P concentrations two times prior to data collection. Multiple transfers
were performed to ensure the stabilization of cellular P stores and the physiological
equilibration of cell cultures to experimental P levels vis a vis Wilhelm et al. (1996).
Cyanobacterial growth was monitored daily using a Turner Designs TD-700
fluorometer (Sunnyvale, CA, USA) equipped with an in vivo chla filter set (excitation
k =340-500 nm; emission k = >665 nm). All experiments were performed in

triplicate unless otherwise noted.

Field Sample Collection.

Field samples were collected at sites across Lake Erie (Table 1) between
August 3-7 2010 aboard the CCGS Limnos. Surface water was collected at each site
using 10L Niskin sampling bottles and subsequently stored in 3L opaque amber
polycarbonate bottles until filtration. Following oxalate rinse procedure, samples

were stored at -20° C until analysis.
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Table 2.1 Hydrological and biological parameters sampled from Lake Erie August
2010. * indicates n=2

Station 478 970 973 882 1163 341 880
(357) (84)

41.65, 41.82, 41.79, 4177, 4147, 41.80, 41.94,

Location

(Lat Long)  goa1 8297  -8332 -8331 -8272 -8229  -81.65
Extracellular
P (%) 4.9 10.91 0.74 9.99  16.54 0 34.12
Total
particulate P 8.2+ 816+  27.05+ 13.18+ 9697+ 628+  6.25+
(ng L) 3.65 3.65 4.68 091 1876 0.86 1.44*
Intracellular
P 7.3+ 727+ 2685+ 11.86+ 8093+ 630+  4.12+
(ng L) 2.78% 2.78* 0.80 117 1320 174  0.099*
SRP (pg L) 0.8 11 13 1.7 2.1 0.4 0.6
-1
TDP (ng L) 7.5 6.9 9.4 106 14.0 5.0 4.8
-1
TP(ug L) 21.6 21.8 37.7 347 855 133 12.9
aNOx-
(mg L) 0.25 0.145 0.017 0.016 0.010 0.073  0.059
NHz (mg L1) bBDL
0.011 0.010 0.009 0.016 0.012  0.018

TDN (mgL1) 0.526 0.338 0.301 0.410 0393 0.361 0.291

PON (mg L1) 0.12 0.178 0.215 0.228 0.678 0.101 0.094
Si02 (mg L)
1.46 1.53 1.77 2.00 3.61 1.53 0.28
POC (mgL1)
0.73 1.20 1.38 1.46 3.66 0.842 0.658
Chla 6.1+ 15.82+ 18.61+ 16.09+ 16.25+ 5.52+ 7.54+
(ug L12SD)

0.13 2.21 0.61 1.34 0.52 0.68 0.74

anjtrate+nitrite. PBDL: below detectable limits (< 0.005 mg L-1).
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Quantification of total cellular and intracellular P.

Total cellular and intracellular P concentrations were independently
measured. Surface bound P was removed using an oxalate wash reagent initially
designed for removal of iron (Tovar-Sanchez et al.,, 2003) and subsequently
demonstrated to be applicable for removal of surface-sorbed P (Sanudo -Wilhelmy
et al,, 2004). Aliquots of 5 mL from individual cultures of 50-200 mL from field
samples were harvested onto pre-combusted (450° C for 4 hours) 25mm Whatman
(Kent, UK) GF/F glass fiber filters for the determination of total P in samples. For
the determination of intracellular P from cultured isolates, aliquots were first mixed
with an equal volume of oxalate wash and allowed to incubate for five minutes prior
to harvest. Field samples were filtered until approximately 5 mL remained on the
filter; 5 mL of oxalate rinse was then applied, incubated for culture isolates and
harvested. A top-up solution containing equal parts oxalate rinse and filtered
lakewater was applied as needed to counter losses due to residual vacuum.
Following this incubation, the membrane was rinsed three times with 5 mL of P-free
growth media or filtered lake water. To control for the removal of surface
associated P by the washing process, samples for total cellular P were rinsed with P-
free medium or filtered lake water four times as described above. Unused growth
medium of each of the experimental P concentrations was either passed through
filters and rinsed with P-free media or oxalate rinse solution was used to control for
media associated P. Filtered station water was used as blanks for field samples. All

treatments were performed in triplicate and blanks were performed in duplicate.

P Measurement.

Organic P was converted to inorganic P via persulfate oxidation (Menzel and
Corwin, 1965; Wetzel and Likens, 2000). Freshly made 5% persulfate solution was
added to samples that were then placed in a boiling water bath for 1 hour. Total P
concentrations were measured spectrophotometricly (885 nm) using the

ammonium molybdate method (Wetzel and Likens, 2000). All measurements for
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field samples were performed on a Thermospectronic Genesys20
spectrophotometer (ThermoFisher Waltham, MA), whereas cultured samples were
processed using a Biomate 5 spectrophotometer (ThermoFisher Waltham, MA).

Field samples were prepared by first digesting with 5% potassium
persulfate, followed by autoclaving for 30 min. Total P was spectrophotometrically
analyzed (880nm) with the molybdate ascorbic acid method (Strickland and
Parsons, 1972) using a 10-cm quartz cell and a Cary 50 UV-vis spectrophotometer
(Varian Palo Alto, CA). A calibration was conducted using phosphate reference
standards of known concentration and National Institute of Standards & Technology
NIST Standard Reference Material (Bovine Muscle Powder, NIST SRM 8414)
processed in the same manner as sample material. Individual replicates were
omitted from field sample analysis if one notably deviated from two others. Deviant
replicates were not unexpected and were likely the result of the incomplete rinsing
of cell aggregates.

Subsamples of cultured samples (1.5 mL) were also collected from each tube
for direct counts of cell density. Microcystis cell densities were determined by
epifluorescence microscopy with a Leica (Wetzlar, Germany) DMXRA epifluorescent
microscope using the Texas Red filter set using accessory pigment (phycobillin)
autofluorescence as previously described (Wilhelm et al., 2006). This was

performed to normalize P measurements to Microcystis cell abundance.

Water Chemistry

Samples for nutrients, including total dissolved phosphorus (TDP), soluble
reactive phosphorus (SRP), total dissolved nitrogen (TDN), NH4*, NO3- + NO>" silicate
(Si02), particulate organic nitrogen (PON) and particulate orgaic carbon (POC), were
collected and stored at 4 °C until analysis. Analysis was conducted at the National
Laboratory for Environmental Testing (Environment Canada) using standardized

techniques.
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Extracted Chlorophyll a

Chlorophyll a (Chla) concentration at field stations was determined as a
proxy for total phytoplankton biomass. Seston was filtered through 0.2-pm nominal
pore-size polycarbonate membranes. Chla concentrations were determined using
the non-acidification method (Welschmeyer, 1994) following extraction in 90%

acetone overnight at -20° C using a Turner Designs 10AU fluorometer.

Results

P-constraints on Microcystis Growth.

The growth rates across a range of P concentrations are shown in Table 2.
Paired samples t-tests were performed and significant differences (p < 0.05)
reported. Growth rates in both strains were only slightly variable across different P
concentrations in growth medium, especially for those cells maintained at higher P
concentrations. Reported growth rates were more variable in M. aeruginosa LE3
than in M. aeruginosa PCC 7806. Although growth rates were stable across
concentrations of P, biomass was notably lower in cultures maintained under the
lower P concentrations (results not shown). It should also be noted that Microcystis
PCC 7806 did not grow consistently at the lowest P concentrations in spite of

repeated attempts.

Total cell-associated and intracellular P quotas in cultured Microcystis.

To obtain accurate intracellular P-quotas for Microcystis aeruginosa, we
utilized the oxalate rinse technique to differentiate between the total cell-associated
and intracellular P pools (Figure 1). The range of total cell-associated P values
reported here (39-173 fg cell'1) are within the range of previously reported values
(29-433 fg cell1) (Rhee and Gotham, 1980; Sbiyyaa et al., 1998; Shen and Song,
2007; Tsukada et al,, 2006). As was anticipated, intracellular P quotas (34-146 fg

cell'1) were smaller than the cell-associated values (39-173 fg cell-1).
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Table 2.2. Microcystis aeruginosa strains PCC 7806 and LE3 growth rates. * n=1 as
replicates would not grow at these concentrations. Statically significant (p < 0.05)

differences in growth rate denoted as a= > 8.75 pM; b= > 87.5 uM; c= > 175 pM.

Organism Growth Media P Growth Rate
concentration (day'+sd)
uM
M. aeruginosa 1.75 0.079*
PCC 7806 8.75 0.123+0.009
17.5 0.149+0.005
87.5 0.162+0.005*
175 0.138+0.023
M. aeruginosa 1.75 0.118+0.008
LE3 8.75 0.142+0.001°°
17.5 0.0844*
87.5 0.058+0.001
175 0.108=0.001°
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Figure 2.1. Total cell associated P (closed circles) and intracellular P (open circles)
in fg cell 't over growth media P concentration. Culture used in the individual figures:
(A) M. aeruginosa PCC 7806 (B) M. aeruginosa LE3. (C) Percent intracellular P of
total P pool in M. aeruginosa PCC 7806 (*) M. aeruginosa LE3 (A)
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As had been previously reported for marine cyanobacteria (Fu et al., 2005), our
results show that surface adsorbed P represents a significant portion (between 10-
50%) of total cell-associated P in Microcystis. We also found that this percentage is

stable across growth conditions in each of the strains tested (Figure 1C).

Total cell-associated and intracellular P in natural samples.

The ratio of total cell-associated P to intracellular P was also investigated in
natural phytoplankton communities. Samples were collected for analysis across
Lake Erie with specific emphasis on the Western Basin. This is because of a history
of Microcystis blooms and a phytoplankton community at times dominated by
Microcystis in this region (Moorhead et al.,, 2008; Rinta-Kanto et al., 2009a; Rinta-
Kanto et al,, 2005). Hydrological and biological parameters measured as part of this
study were similar to those previously reported across Lake Erie (Table 2, DeBruyn
et al,, 2004). Intracellular P made up an average of 89+11% with a range of 0-65%
of total particulate P in these samples (Table 1). Pearson correlation analysis of
Western Basin samples showed weakly significant correlations (p>0.1) between the
proportion of surface-associated extracellular P and several environmental
variables, including SRP, POC, PON, and SiO; (Table 3). Notably, no significant
correlation was observed between the proportion of extracellular P and either TP or

TDP (Table 3, Figure 2).

Discussion

It is generally understood that P is the nutrient limiting phytoplankton biomass in
many freshwater systems and that, by reducing P loading to eutrophic bodies of
water, we can begin to control formation of algal blooms and biomass accumulation
(Schindler et al,, 2008). While the previous statement is generally true, it is

important to note that individual HAB organisms have specific nutrient needs and
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Table 2.3. Pearson correlation analysis results comparing the extracellular
percentage of total particulate P to hydrological and biological parameters.

r p
Total particulate P 0.648 0.164
Intracellular P 0.619 0.189
SRP 0.784 0.065
TDP 0.714 0.111
TP 0.706 0.117
aN Oy -0.169 0.748
NH;3 -0.508 0.304
TDN 0.144 0.785
PON 0.764 0.077
Si02 0.733 0.09
POC 0.757 0.081
chla 0.451 0.369

anitrate+nitrite
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differ in their abilities to assimilate nutrients from different chemical species. For
example, whereas the reduction of N in a eutrophic system may lead to an overall
reduction in phytoplankton biomass, it can also lead to the proliferation of
cyanobacteria capable of fixing N2, many of which are potentially toxic (Chorus and
Bartram, 1999). Moreover, it is now well established that some freshwater
cyanobacteria possess the capacity to assimilate P from complex organic sources,
such as phosphonates (Ilikchyan et al.,, 2009). To this end, we examined the P
requirements of one of the most prominent bloom forming cyanobacteria, M.
aeruginosa, in order to develop a dynamic cellular quota that can be used to inform
credible data reporting. To do so, we applied recently developed techniques that
allow for the individual analysis of total cell-associated vs. intracellular P-pools in
phytoplankton.

Our results show plasticity in both cellular and surface absorbed P quotas.
The ability to adjust intracellular P levels while maintaining a stable growth rate
across a range of P concentrations is important for bloom forming cyanobacteria
because it allows for persistence in conditions that do not allow for the
accumulation of significant biomass. This nutritional flexibility is important for
microbes in environments that experience large nutrient variability, such as large
lakes and estuarine systems. In contrast to the plasticity of the cellular P quotas is
the stability of the total cell-associated P to intracellular P ratio. Our data show this
ratio to be stable, demonstrating the ability of Microcystis to adjust its P needs.
These observations imply that surface associated P is a function of the external
concentration in the environment, and thus probably not a mechanism to scavenge
P for storage. One potential route for P adjustment has been described in marine
cyanobacteria that have been observed to substitute phospholipids for nitrogen and
sulfur containing lipids in response to P limitation (Van Mooy et al.,, 2009), though

this ability has not yet been described in Microcystis.
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Observed variability in P quota values in the tested strains is likely attributable to
variance between strains. This variance is also observed in genetic differences
between the sequenced Microcystis strains (Frangeul et al., 2008; Kaneko et al,,
2007). In contrast to our observations in cultured Microcystis, the ratio of
intracellular to extracellular P was not constant between Lake Erie stations. While
this variability is correlated to differences in ambient SRP concentrations,
dissimilarity in plankton communities between these sites may also contribute. The
measured high proportion of intracellular P as compared to the total P pool in Lake
Erie is indicative of an actively growing phytoplankton community as has been
demonstrated previously (Sanudo -Wilhelmy et al., 2004).

The fate of stored P on the cell surface remains elusive; it is possible that,
when cells are shifted from P-replete to P-limiting conditions, this surface
associated material can be assimilated by cells as opposed to the alternative of this P
being lost back to the environment. Indeed, given that Microcystis can regulate its
buoyancy (Brookes and Ganf, 2001) and is known to sink in response to P stress
(Konopka et al., 1987), it is feasible that a benefit of moving “in and out” of the light
field (from the upper water column to the deeper water column and back) may be to
leave nutrient poor surface waters and access P released from the sediments. In this
hypothetical scenario, it may be possible that cell-surface associated P gathered at
depth becomes available for use in nutrient deplete upper waters when light
conditions are more permissible.

Models of eutrophication and phytoplankton growth remain a critical tool for
systems managers attempting to control frequent bloom formation and have been
applied to Lake Erie since the middle of the 20t century (Di Toro et al., 1975; Léon
et al.,, 2005; Schwab et al., 2009; Zhang et al., 2008). Microcystis growth has been
specifically targeted in many of these models because it is a problematic, bloom-
forming cyanobacterium. Physiological parameters such as cellular nutrient quotas,
nutrient uptake rates and cellular growth rates are integral to generating accurate

predictions of cellular growth and toxin production under specific environmental
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conditions. Cellular P quota is a variable used (or is integral to variables used) in
environmental models that have been applied to both Microcystis and Lake Erie
(Burger et al.,, 2008; Léon et al., 2006; Robson and Hamilton, 2004; Trolle et al.,
2008). This use of P quota as a modeling variable coupled with the fact that
literature P quotas in Microcystis do not take into account the presence of externally
bound P hinders the ability of these models to accurately project the occurrence of
blooms and underestimates the algal biomass that can be supported by current P
inputs. For example, the minimum internal P value applied to the CAEDYM model by
Robson and Hamilton (2004) of 0.4 mg P (mg chla)! represents approximately a
40x overestimation of the P needs of this organism compared to the values reported
here. The accurate prediction of natural conditions by environmental models is
dependent on the use of precisely measured variables, so it is critical that the
modeling community use the most appropriate values. Moreover, the significant
metabolic plasticity with respect to P-quotas demonstrated by Microcystis in the
present study is also not taken into account in current models. The current
mathematical models use one or two values, often the minimum and maximum, to
describe biological parameters such as growth rate or internal P quota (to limit the
complexity of already complex models). Microcystis however has the ability to adapt
to environmental challenge. As such, the ability of new hydrodynamic models, such
as ELCOM, to more effectively describe changing physical conditions and nutrient
concentrations in the water column suggest biological models would benefit from
incorporating a more complex view of cyanobacterial growth over nutrient and
temperature gradients.

Available sequence data from Microcystis genomes further demonstrate this
microbe can adapt to a range of growth conditions. Genes encoding mechanisms to
deal with cold, osmotic stress and darkness (Frangeul et al., 2008) are present as are
multiple systems involved in phosphate acquisition (Kaneko et al., 2007). Both
sequenced Microcystis genomes (M. aeruginosa PCC 7806 and NEIS-843) have a

large percentage of long repeated sequences (11.7% in both) when compared to
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other cyanobacterial genomes (<5%) (Frangeul et al.,, 2008; Kaneko et al., 2007).
While the authors of these molecular studies highlight the data demonstrating the
potential for these organisms to adapt to environmental changes, our current study
goes beyond their work and demonstrates the range of this metabolic plasticity.
The importance of controlling the growth of HAB cyanobacteria cannot be
understated because of the water quality impacts on both undeveloped and
industrial countries. Previous studies examining P quotas in Microcystis measured
only the total cell-associated P pool. In this study we differentiate between the total
cell-associated P pools, including surface bound P, and the intracellular P pool; thus
the P quotas reported here are a more representative examination of the P needs of
Microcystis than has been previously reported. These results will be useful to

resource managers attempting to model and control this nuisance alga.
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SECTION III

GLYPHOSATE INFLUENCE OF PHYTOPLANKTON COMMUNITY
STRUCTURE IN LAKE ERIE
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background information gathering and writing of this section.
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Abstract

In this study we investigated the effect of loading of the phosphonate herbicide
glyphosate (N-(phosphonomethyl)glycine) on the phytoplankton community
structure in the Laurentian Great Lake, Lake Erie, using lake water incubations,
laboratory growth experiments and phylogenetic analysis of phosphonate
metabolism genes. The addition of glyphosate in Sandusky Bay microcosms resulted
in a significant increase in phytoplankton abundance, specifically causing an
increase in the abundance of Planktothrix spp. In Maumee Bay glyphosate did not
stimulate phytoplankton growth but caused a decrease in Microcystis spp.
abundance. The difference in the ability of Planktothrix spp. and Microcystis spp. to
grow in the presence of glyphosate was confirmed in laboratory growth
experiments. Further, an examination of the molecular pathways involved in
phosphonate metabolism demonstrated that heterotrophic bacteria are a critical
component of the community in Lake Erie. These results indicate glyphosate is
positively and negatively influencing phytoplankton community structure in the
lake, providing nutrient to microbes able tolerate the herbicidal effects of the
compound while Kkilling less tolerant microbes. Moreover, this work highlights that
in natural environments microorganisms function as communities and the
metabolic abilities of individual species are often less important than the collective

ability of the community.
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Introduction

The phosphonate herbicide glyphosate (N-(phosphonomethyl)glycine) is the
primary active ingredient in Roundup™ and the most widely used chemical
herbicide globally. Glyphosate is a broad-spectrum herbicide that acts as a glycine
analogue, inhibiting the synthesis of aromatic amino acids acting on 5-enol-
pyruvylshikimate-3-phosphate (EPSP) synthase (Steinrucken and Amrhein, 1980).
The development of Roundup Ready™ crops that tolerate glyphosate exposure
through the possession of a tolerant EPSP synthase and/or a glyphosate metabolism
gene (Tan et al., 2006) has led to high application levels. Estimated application rates
are between 103 and 113 million lbs in the United States, including high agricultural
applications in the Lake Erie drainage basin (Kannan et al,, 2006; Struger et al,,
2008). Indeed, glyphosate has been measured in Lake Erie tributaries on both sides
of the United States-Canadian border and has been measured in Lake Erie itself.
Glyphosate detection in Lake Erie is transitory, with the highest concentrations
being observed in conjunction with spring agricultural glyphosate application (Byer
et al.,, 2008, McKay and Bullerjahn, unpublished; Struger et al., 2008). The lack of
glyphosate accumulation throughout the year is strongly indicative of microbial
degradation of this compound in Lake Erie.

Genes encoding for a microbial phosphonate metabolism system were
originally described in E. coli (Wanner and Boline, 1990), subsequently this C-P
lyase system has been shown to be important to microbial degradation of these
compounds in nature (Quinn et al.,, 1989; Wanner and Boline, 1990). The C-P lyase
operon (phnC-P) in E. coli is a 10.4 kb multi-enzyme gene cluster under the control
of alow P induced Pho promoter and encodes two major functional units. An ABC
type phosphonate transporter is encoded by genes phnC-E, and phnG-M make up the
C-P lyase itself responsible for the cleavage of the C-P bond. This enzyme has been
show to be able to metabolize a broad range of phosphonate substrates. Evidence of

frequent horizontal gene transfer has been observed in this gene cluster and gene
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order is not conserved between taxonomic groups, likely as a result of repeated
rearrangements (Huang et al., 2005). Other phosphonate metabolism enzymes have
been identified, many of which are not subject to the influence of exogenous P levels
and are specific to particular phosphonate substrates (Quinn et al., 2007).

Glyphosate has shown to positively (as a nutrient source) and negatively (as
a toxic compound) influence microbial communities. P, C and N mineralization from
glyphosate by microbes in soils has also been observed (Dick and Quinn, 1995;
Lancaster et al.,, 2010; Liu et al.,, 1991). Phosphonate metabolism and the presence of
phosphonate metabolism genes have also been observed in cyanobacteria from
freshwater and marine systems, particularly picocyanobacteria and filamentous
cyanobacteria (Dyhrman et al., 2006; Ilikchyan et al., 2009; Stucken et al., 2010).
The application of glyphosate has been observed to influence microbial community
structure in freshwater (Perez et al., 2007), shifting the community from
glyphosate-sensitive green algae and diatoms to glyphosate-tolerant cyanobacteria.
Changes in microbial community structure upon glyphosate exposure have also
been described in marine (Stachowski-Haberkorn et al., 2008) and soils systems
(Lancaster et al., 2010).

While large scale blooms of the toxic cyanobacterium Microcystis have been
documented in the Laurentian Great Lakes for over 15 years (Brittain et al., 2000;
Rinta-Kanto et al,, 2005), other cyanobacteria that are capable of producing the
toxin microcystin have been documented and in some cases are dominant in
regional embayments (Millie et al., 2009; Rinta-Kanto and Wilhelm, 2006). Given
previous reports of the differential effects of glyphosate on cyanobacteria (Forlani et
al,, 2008), we tested the hypothesis that glyphosate loads from surrounding
watersheds could simultaneously act as a negative selection, excluding Microcystis
from these embayments, and a positive selection, providing nutrients to

Planktothrix.
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Given the need for molecular transformations of this compound, we further
investigated a component of the pathway involved in glyphosate degradation (the
phosphonate metabolism gene phnJ) to determine which members of the microbial

community may be active in this process.

Materials and Methods

Sample collection

Experiments were performed using field samples collected during August
2007 aboard the CCGS Limnos at Environment Canada stations 973 (41° 47’ 30” N,
82°19’56” W), 885 (41°46'59" N, 83°02' 14" W) and 1163 (41°43' 35" N, 83° 09’
00" W) in the western basin of Lake Erie (Fig. 1). Water was collected at each site
using 10L Niskin sampling bottles.

Glyphosate amendment incubations were performed using surface water
from stations 973 and 885. Station water was distributed into 1.2L polycarbonate
bottles and premixed inorganic phosphate cocktail (1:4: mixture of KH2P04:K2HPO4)
or glyphosate was added to a final concentration of 1uM, unamended controls were
also executed. All incubations were performed in triplicate. Microcosm bottles were
sealed and incubated at in situ temperature using an on-deck incubator with
constant surface water flow. Neutral density screening was used to reduce light
levels to 37% surface radiation. Following a 48-hour incubation, bottles were

removed from the incubator and samples were immediately collected for analysis.

Chlorophyll-a estimates and phytoplankton enumeration

Total community chla was determined by filtration of whole water onto 0.2
UM pore-size 47mm polycarbonate filters (Millipore) after extraction (24h, 4°C) in
90% acetone. Extracted chla was measured using a Turner Designs AU10

flourometer following the non-acidification protocol (Welschmeyer, 1994).

59



planiglobe.com 2008

(%]

0 12

24 km

Figure 3.1. Map of Western Basin of Lake Erie sampling sites used in this study.

Sampling sites are noted with Environment Canada station numbers.
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Phytoplankton enumeration was performed using samples preserved in
Lugol’s [odine as previously described (Anderson, 2005; Rodhe et al,, 1958). 50 mL
samples from each incubation were collected and immediately distributed into
amber bottles with predespensed Lugol’s lodine resulting in a final concentration of
2% (vol/vol) fixative. Fixed-samples were then enumerated using a Sedgwick-Rafter
counting slide (Wildco) on a Micromaster light microscope (ThermoFisher).
Samples were allowed to settle in the counting chamber for 3-5 minutes prior to
enumeration. Four horizontal passes were made across each slide encompassing the
full height and width of the slide; no fewer than 40 fields of view were randomly
selected across each slide. Each field of view was imaged and saved using Micron
imaging software (Westover Scientific); the use of this software allowed for the

measurement of the field of view.

Laboratory growth experiments

The ability of cyanobacterial cultures to use glyphosate and selected
breakdown products as lone sources of P or N was tested by growing unialgal
cultures in CT growth media in which the standard P or N sources (Naz (3-
glycerophosphate, KNO3) were replaced with compounds known to be in the
glyphosate breakdown pathway. Growth on P containing compounds was tested
using 5 concentrations of each chemical ranging between 1.75 and 175 pM.
Potential N sources were tested in concentrations ranging from 30uM - 3mM.
Glyphosate and AMPA were tested as N and P sources, while sarcosine was only
tested as N sources because this compound does not contain P. Experiments were
performed with cyanobacterial strains Microcystis aeruginosa NIES 843 and
Planktothrix agardhii PCC 7811. M. aeruginosa NIES 843 was obtained from the
National Institute for Environmental Studies of Japan in 2009. This strain is capable
of producing microcystin and is the only available isolate with a completed genomic
sequence (Kaneko et al., 2007). P. agardhii PCC 7811 was acquired from the Pasteur

culture collection in 2001; this strain is also known to possess microcystin synthase
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genes (Ouellette and Wilhelm, 2003). Lake Erie strains Microcystis aeruginosa LE3
and Planktothrix agardhii LE9 were also tested to confirm type strain results (not
shown). Cultures were grown in 50 mL glass culture tubes (Kimble, Vineland, NJ) at
24° C under 12h-12h day-night cycle with ~30 pmol photons m-2 s-illumination.
Prior to use, all culture tubes were soaked overnight in 1% HCL and rinsed multiple
times with MilliQ water. Samples were grown and transferred at experimental
conditions two times prior to data collection. Multiple transfers were performed to
ensure the physiological equilibration of cell cultures to experimental conditions vis
a vis Wilhelm et al. (1996). Cyanobacterial growth was monitored daily using a
Turner Designs TD-700 fluorometer (Sunnyvale, CA, USA) equipped with an in vivo
chla filter set (excitation A = 340-500 nm; emission A = >665 nm). All experiments
were performed in triplicate.

Potential toxicity effects of the compounds used in the above growth
experiments were tested on M. aeruginosa NIES 843 and Planktothrix agardhii PCC
7811. Cultures were grown in CT media containing the normal N and P sources as
well as glyphosate and breakdown products at the concentrations described above.
The toxicity of glyphosate was further investigated by testing 10 additional

concentrations between 0.05 and 5 mM.

PCR, Construction of Clone Library, and Phylogenetic Analysis

Surface water collected from stations 973 and 1163 was filtered onto 0.22-
um nominal pore-size 25mm diameter polycarbonate filters (Millipore) and nucleic
acids were extracted via the phenol-chloroform extraction method as previously
described (Rinta-Kanto et al., 2005; Sambrook and Russell, 2001).
Primers targeting C-P lyase gene phn/ from heterotrophic bacteria and
cyanobacteria were designed for this study using phnJ sequences acquired from
NCBI GenBank (phnJF-5'TSAARGTSATYGACCAGGG, phnJR-
5’GCARTARTCSGTRTCSGARCA). Primers were tested for amplification and

specificity using cultured isolates. PCR reactions were performed using PuRe Taq
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Ready To-Go PCR beads (GE Healthcare) according to specifications with ~1-uL of
DNA, 20 pmol of each primer, and sterile water up to a total volume of 25 pL.
Reaction mixes without template served as negative controls. Thermal cycling was
performed as follows: initial denaturation of 95° for 5 minutes, followed by 40
cycles of 95° for 30 sec, 61° for 30 sec, 72° for 45 sec and by an extension step of 72°
for 5 min. All PCRs were performed on a Mastercycler Gradient thermocycler
(Eppendorf). PCR product was stored at 4° C until examined via electrophoresis on
1.5% agarose, with subsequent visualization and an Investigator digital imager
(Fotodyne) with ethidium bromide filter using Foto/Analyst® PC Image v. 9.0.4
software. Following ethidium bromide staining target bands were excised and
cleaned using the Wizard SV gel and PCR clean-up system (Promega). Eluted DNA
was cloned using a TOPO TA cloning kit (Invitrogen), and resulting plasmids were
extracted and purified using the QIAprep Spin Miniprep Kit (QIAGEN). DNA
sequences were obtained from the University of Tennessee Molecular Biology
Resource Facility.

Sequences were manually screened for quality at which time vector and
primer sequences were removed. Translation from nucleotide to amino acid
sequence was performed prior to phylogenetic analysis. Sequences were edited,
translated and organized using Geneious bioinformatics software (Drummond,
2010). Sequences were aligned by ClustalW using ClustalX 2.0.8 software
(Thompson et al,, 1994). Phylogenetic relationships were investigated via Neighbor
Joining analysis using the Poisson correction method. Bootstrap values were
generated based on 5000 iterations. Maximum Parsimony and Maximum Likelihood
tree building models resulted in the same general clustering pattern. Neighbor-
Joining and Maximum Parsimony phylogenetic analyses were performed using
MEGA 4.1 software. Maximum Likelihood analysis was performed through
phylogeny.fr. One-tailed t-tests were used to determine significant differences

between treatment variables. Statistical analysis was performed using SPSSv. 16
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Results

Phosphonate addition microcosm

To determine the effect of glyphosate addition on Lake Erie, phytoplankton
community microcosm experiments were performed in which lake water was
amended with glyphosate or phosphate. These incubations were performed at
stations 885 and 973; sta. 885 is located in the Sandusky sub-basin just outside of
the opening to Sandusky Bay. We chose this location because phytoplankton in
Sandusky Bay are too abundant for microscosm experiments to be consistently
replicated. We have previously observed that the phytoplankton community at
station 885 is influenced by “seeding” via outflow from the bay, resulting in a
cyanobacterial community similar to the community in Sandusky Bay (although
dilute and including both Planktothrix and Microcystis). At station 885, the
glyphosate addition treatment resulted in a modest yet statistically significant
increase (t-test p < 0.05) in chla from 2.4-3 pg L1 (Fig. 2A) when compared to the
phosphate treatment and the unamended control. This chla increase in the
glyphosate treatment corresponded to a statistically significant increase in
Planktothrix spp. cell abundance from 1.39 x107 to 2.56 x 107 cells mL-! (Fig. 2B). A
significant decrease in Aulacoseira spp. abundance was observed in both the
phosphate and glyphosate treatments. No significant changes in chla were observed
in either treatment at station 973. In the Maumee Bay incubations ,a significant
decrease in Microcystis spp. was observed in the glyphosate treatment (6.63 x 10
cells -ImL) as compared to both the unamended control (7.97 x107 cells -'mL) and

the phosphate treatment (5.08 x107 cells -'mL) (Fig. 2C).

64



I Control
4 3 1 uM Phosphate
B 1 M Glyphosate
3
o
2
s 2
=
@]
1
04
3107 885 973
X
B *
3x107 4
2x107
o
23107
©
s}
107 A
5x108
0
Planktothrix spp Microcystis spp. Aulacoseira spp
8x107 C
7
6x10 *
< 4x107 4
)
b
0
©
s}
2x107
)7 4
10 *
5x108

Planktothrix spp Microcystis spp. Aulacoseira spp

Figure 3.2. Lake Erie glyphosate amendment microcosm, black bar indicates no-
addition control, light grey 1 uM phosphate addition and dark grey 1uM glyphosate
addition. Statitcally significant differences (p < 0.05) are denoted *. (A) chla
concentrations from incubations performed at stations 885 and 973 as well as cell
Other major taxa observed at both stations for which no significant changes in
abundance were recorded include Cyclotella spp., Anabaena spp. and Scenedesmus
spp. count results from(B) sta. 885 and (C) sta. 973. All values are shown as mean *

standard deviation
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Laboratory Growth Experiments

Toxicity of glyphosate to Planktothrix agardhii PCC 7811 and Microcystis
aeruginosa NIES 843 was tested. Microcystis was observed to be less resistant to the
toxic effects of glyphosate than Planktothrix (Fig. 3). Microcystis growth rate
remained above 95% of the untreated control at 0.05 mM; however while
Planktothrix maintained growth at above 90% of the control at 0.1 mM, Microcystis
growth rate dropped to below 40% of the control. Microcystis were observed to be
unable to grow at all over concentrations of 0.2 mM glyphosate. Planktothrix was
unable to a maintain 90% growth rate at glyphosate concentrations over 0.15 mM
and was unable to grow at concentrations over 0.35 mM.

In lab studies Planktothrix cultures were better able to use glyphosate and
breakdown products known to accumulate in the environment as sources of
nutrient than our model Microcystis strains. Planktothrix cultures were able to use
glyphosate and AMPA as sources of P. These cultures were also able to use AMPA as
an N source (Table 1). Not only is Microcystis unable to use glyphosate or AMPA as a
source of P or N, but it is also unable to use any tested breakdown products (Table

1).
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Figure 3.3. Glyphosate toxicity effects on cyanobacterial culture growth. Black
circles: Planktothrix agardhii PCC 7811, open triangles: Microcystis aeruginosa NIES
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without glyphosate. Values shown as mean * standard deviation.
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Table 3.1 Growth of cyanobacterial cultures using glyphosate and select breakdown
products as sole sources of P and N. Numerical values indicate maximum measured
growth rate over a 21-day period as a percentage of control (Naz (3-
glycerophosphate, KNO3), shown as mean # standard deviation. Zero (0) indicate the

culture was unable to grow using the experimental nutrient source in the tested

period.
Microcystis aeruginosa Planktothrix agardhii
NIES 843 PCC 7811
Phosphorus
Glyphosate 0 118.04% *16.61
(175 pM)
AMPA 0 115.19% £22.25
(44 uM)
Nitrogen
Glyphosate 0 0
AMPA 0 123.66% £5.17
(825 uM)
Sarcosine 0 0
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Phylogenetic Analysis

To further investigate the bacterial (both heterotrophic and cyanobacteria)
community involved in the metabolism of phosphonate in the environment, the
phosphonate metabolism gene phnJ was amplified and sequenced from Lake Erie
stations 973 and 1163. All (39 total) of the sequences obtained from both stations
clustered most closely with heterotrophic bacteria (Fig. 4). At station 1163 nearly
all (19 of 20) sequences are closely related to publicly available E. coli phn]
sequences. The other sequence obtained from station 1163 grouped with the soil y-
proteobacterial cluster. Sequences from sta. 973 group strongly with o and f3-
proteobacterial clusters. Also observed were sequences that grouped weakly with 3-

proteobacteria.

Discussion

Large agricultural application of the phosphonate herbicide glyphosate has led to
the presence of this chemical in measurable quantities in Lake Erie and its
tributaries. In this study we examined the effect of the occurrence of this chemical
on phytoplankton community structure in Lake Erie. Our results demonstrate that
glyphosate can suppress the growth of the cyanobacterium Microcystis but facilitate
the growth of another potentially toxic cyanobacterium, Planktothrix, in regions of
the lake. These results further suggest that glyphosate and its breakdown products
are available to the microbial community as a source of nutrient, that the microbial
community in the lake capable of phosphonate degradation is more diverse than
previously observed, and that this degrading community is largely composed of

heterotrophic bacteria.
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Our observations indicate that controls of glyphosate loading in Lake Erie and its
tributaries will be important to more successful management of harmful algal bloom
events. These results also contribute to the growing body of literature showing that
microbes in the environment do not exist as individuals, but rather are dependent
on the metabolic abilities of their neighbors.

The significant increase in chla at sta. 885 with the addition of glyphosate
but not with phosphate is noteworthy because it gives an indication of which
nutrients may be limiting phytoplankton growth at this site. Generally,
phytoplankton in freshwater systems are considered to be phosphorus limited and
limiting P in eutrophic systems has been critical to controlling algal blooms in
multiple locations, including Lake Erie (Makarewicz and Bertram, 1991; Schindler et
al,, 2008). Recently this paradigm has been challenged with a growing body of
evidence contesting that in many freshwater and estuarine systems controlling N
inputs along with P is critical to controlling eutrophication (Conley et al., 2009). Our
results indicate that Sandusky Bay was not P limited, but rather N-limited or N and P
co-limited. Potential N limitation is further suggested at sta. 885 by a N:P ratio of 6.3
(Wilhelm and Bourbonniere, unpublished).Considering the significant resources
dedicated to the control of eutrophication in Lake Erie, evidence that glyphosate, a
chemical being applied in the Lake Erie watershed in large amounts, its a potential
source of P and N is noteworthy.

This study also illustrates that the presence of glyphosate can exert negative
control on a phytoplankton through the herbicidal effects of the chemical. These
herbicidal effects are likely the reason why the significant decrease in Microcystis
cell density was observed in glyphosate microcosms at sta. 973. Although, like all
cyanobacteria, Microcystis possesses a glyphosate tolerant version of ESPS synthase,
this cyanobacterium has been observed to be less tolerant of glyphosate in vitro
than other tested cyanobacteria, both in this study and others (Forlani et al., 2008).
While the glyphosate concentrations at which toxic effects on Microcystis are

observed in vitro are higher (between 50 and 100 uM in culture) than the

71



concentration tested in this microcosm (1uM) or those observed in the field (0.001
uM in lake water, 0.01 uM in Maumee River, McKay and Bullerjahn, unpublished),
the added stress of living in an environmental setting could lower the
concentrations at which glyphosate effects growth in this organism. Also, despite
the previously discussed drop in Microcystis cell number at sta. 973, there was no
corresponding drop in chla. This lack of a drop in chla is not compensated by an
increase in abundance of another measured taxa, but likely by an increase in
Synechococcus, though this has not be tested. In fact, Lake Erie Synechococcus have
been reported to possess phosphonate transport genes (Ilikchyan et al., 2009) that
potentially allow them to utilize phosphonates such as glyphosate as a source of P.
To build on the results of the field microcosms, we examined the ability of
Planktothrix and Microcystis cultures to grow in elevated concentrations of
glyphosate as well as their ability to assimilate it (and its breakdown products) as P
and N sources. Unialgal (but not axenic) cultures were used for this component: a
growing body of evidence has clearly demonstrated that the interactions between
phytoplankton and heterotrophic bacteria are critical to understanding how and
why phytoplankton are successful in nature (Morris et al., 2008). Moreover, recent
studies demonstrate that these cyanobacteria cultures are likely unavailabile
axenically (Rounge et al., 2009). Notably, microbes in both Microcystis and
Planktothrix cultures possessed the phosphonate metabolism gene phn/ (data not
shown), and phnJ sequences obtained from the Planktothrix culture clustered most
closely with soil a-proteobacteria, not cyanobacteria (Fig. 4). Indeed, with these
glyphosate toxicity and nutrient results corroborating our Lake Erie microcosm
findings, it is clear that glyphosate influences the distribution of Microcystis and
Planktothrix in Lake Erie. This influence is enacted through the suppression of the
population less able to withstand the toxic effects of glyphosate and the support of

those microbes able to use it and its breakdown products as a source of nutrient.
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Given the importance of glyphosate on phytoplankton community structure, we
investigated the heterotrophic and cyanobacterial community potentially able to
metabolize this compound in Lake Erie through the amplification of the C-P lyase
gene phnJ/ from Sandusky and Maumee Bay. Obtained sequences show significant
terrestrial influence in Sandusky Bay, with E. coli and rhizobium-like sequences
likely from agricultural sources. Also observed were sequences without close
relatives among available phnJ sequences, highlighting the general lack of
freshwater bacterial genome sequences. It should be noted however that, because of
high P-loads at this site, it is possible that the C-P lyase system is not active, though
the varied gene arrangements that have been observed in sequenced genomes
containing C-P lyase make non-Pho regulon controlled variants possible. Overall,
these results illustrate the importance of heterotrophic bacteria in phosphonate
metabolism in freshwater.

While both Planktothrix and Microcystis, as bloom forming cyanobacteria,
thrive in warm eutrophic systems, these results illustrate how physiological and
lifestyle differences between Planktothrix and Microcystis inform why these
microbes are often successful in different environmental settings. Microcystis is
known for a high P uptake rate and is successful in deeper eutrophic lakes.
Observed to regulate buoyancy in response to nutrient stress, Microcystis reduces
gas vesicle content within the cell when stressed for P, allowing it to migrate to
nutrient-rich waters lower in the water column from where Pi from the sediments
can be collected and stored (Konopka et al., 1987). In contrast, Planktothrix is
successful in shallow well-mixed eutrophic lakes. While this success is often
attributed to Planktothrix being better suited to the turbidity of such shallow bodies
of water (Scheffer et al.,, 1997), algal growth itself is often responsible for much of

this turbidity, likely making this explanation an oversimplification.
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Another reason for the success of Planktothrix in shallow lakes is suggested by the
results of this study; filamentous cyanobacteria may be better able to utilize
complex nutrient forms cycled by the heterotrophic bacterial community. This
possibility merits further study.

Applying the above observations to the Sandusky and Maumee Bay systems
in Lake Erie, a clearer picture emerges concerning the differences in cyanobacterial
community structure we see at these sites. In Sandusky Bay early season pulses of
glyphosate impede Microcystis growth while glyphosate-tolerant filamentous
cyanobacteria are allowed to proliferate. The enclosed nature of this embayment
(depicted in Fig. 1) results in prolonged exposure of specific microbial communities.
As the phosphonate metabolizing community mineralizes the post-application
glyphosate pulse, the annual Planktothrix bloom sets up. This concentrated (a
reported 2002 value of 75 pg L1 (DeBruyn et al., 2004) is representative) bloom is
supported by nutrients supplied by the Sandusky River and the sediments. High
turbidity throughout the fully mixed water column favors the success of
Planktothrix until the bloom collapses due to cold weather. Maumee Bay is large and
open to mixing with the rest of Lake Erie. As a result the plankton of this site, though
exposed to glyphosate, likely do not see continuous exposure but rather are
exported elsewhere. Here, the phosphonate utilizing community metabolizes the
spring glyphosate pulse. Following the drop in glyphosate levels, Microcystis can
reestablish from the sediments or from an area not exposed to glyphosate.

The results of the above experiments indicate that glyphosate is a potentially
important influence on phytoplankton community structure in Lake Erie and that
glyphosate is a potential source of the important nutrient N and P to the Lake Erie
system. Resource managers intending to control harmful cyanobacterial bloom
occurrence and nutrient loading should carefully consider this compound and its

impact on both of these important areas of concern to the health of Lake Erie. ™
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SECTION IV

SEASONAL SI:C RATIOS IN LAKE ERIE DIATOMS - EVIDENCE OF
WINTER SILICIFICATION
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Abstract

Recent investigations of Lake Erie in the winter have demonstrated the occurence of
significant phytoplankton blooms largely consisting of the diatom Aulacoseira
islandica (0. Miiller) Simonsen. The stoichiometric relationship between carbon and
silica of this productive winter Lake Erie phytoplankton assemblage was examined
and compared to the activity of the summer community. We measured Oz evolution
as proxy for C fixation and PDMPO fluorescence as a measure of Si deposition, the
latter demonstrating conclusively that diatoms were active during winter months.
Although the winter community was observed to be active, it was less active than
the summer with lower measured rates of O; evolution and Si deposition. Our
results confirm that diatoms are the primary drivers of winter productivity. These
findings impact the current understanding of hypoxia in Lake Erie, providing insight

into the influence of the winter diatoms on hypoxia formation.
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Introduction

Diatoms are well described as significant drivers of C and Si cycling in
freshwater and marine systems (Round et al., 1990). These phytoplankters are
particularly noted for higher sinking rates than other phytoplankton as a result of
their high-density Si frustules (Gibson, 1984; Smetacek, 1985). The role of diatoms
in the export of carbon to the deep benthos has been well studied in marine systems
(Billett et al., 1983; Smetacek, 2000), where interest in stimulating diatom blooms
as a potential way to sequester excess atmospheric COz in the deep ocean has been
explored (Boyd et al., 2000). Their function in carbon export has also made diatoms
of interest in areas experiencing hypoxia, such as the Gulf of Mexico and Lake Erie
(Diaz and Rosenberg, 2008; Hawley et al., 2006; Rabalais et al., 2002). In these
systems exported carbon is not sequestered in the benthos, but rather is consumed,
along with O2, by secondary producers resulting in low oxygen conditions.

Hypoxia in the central basin of Lake Erie is a well-described and ongoing
problem (Rosa and Burns, 1987). The scale of hypoxia in Lake Erie has become quite
large in recent years, with 10,000 km? region, nearly the entire central basin,
becoming hypoxic in 2005 (Hawley et al., 2006). Although this phenomenon has
long been a focus of the Great Lakes research community, many of the complex
biological, chemical, and physical factors that contribute to hypoxia are not well
understood. In a recent study, Lashaway and Carrick (2010) illustrated the
importance of sedimentary algae to hypoxia development, showing that as much as
30% of oxygen usage in the sediments is the result of the oxidation of algal biomass.
This study also noted the prevalence of diatom biomass in the sediments.

In Lake Erie, diatoms have historically been thought to be primary members
of the spring phytoplankton community (Barbiero and Tuchman, 2001) though
reported biomass estimates are modest, especially when compared to the scale of

hypoxia in this system.
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Large-scale winter diatom blooms are known to take place in Lake Baikal
(Straskrabova et al,, 2005) and intermittent investigations over the last half-century
(Chandler, 1940; Holland, 1993) have suggested the occurrence of similar winter
diatom blooms in Lake Erie.

Recent investigations have uncovered abundant phytoplankton across Lake
Erie during the winter (Twiss et al,, 2010). Remarkably high biomass was measured
with chla concentrations at some sites higher than those recorded in the summer.
This assemblage was particularly noted for high diatom abundances, especially the
centric diatom Aulacoseira islandica (O. Miiller) Simonsen. Aulacoseira has also been
identified as one of the primary members of the spring phytoplankton assemblage
and this diatom has been observed in high abundances in benthos collected in the
spring (Carrick et al,, 2005). Substantial quantities of Stephanodiscus spp.,
Asterionella sp. and Cyclotella sp. were also present in the winter assemblage. In
addition to diatoms, notable communities of Synechococcus spp. and picoeukaryotes
such as Chlorella spp. were observed.

Of particular interest were high concentration diatom communities that
appeared to be associated with the ice itself, described in detail by Twiss et al
(2010). These communities may be associated with the underside of the ice, as has
been illustrated in filamentous diatoms present on Arctic ice (Gutt, 1995), but this
has yet to be confirmed in Lake Erie. It is not known how these ice-associated
communities form or disperse or the time scale over which these events occur.

In this study, we investigated the hypothesis that the winter diatom
community is active and thus contributes in a meaningful way to the accumulation
of carbon in the benthos and hypoxia in the summer. At the onset of the study, our
null hypothesis was that the diatom community observed in the winter is not active
but rather the vestige of the late season diatom community surviving until
conditions improve in the spring. To test this hypothesis, we needed to establish
that the highly abundant diatoms were active. To specifically assess diatom activity

in ice-covered Lake Erie, we used the fluorescent dye, PDMPO, which is co-deposited
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with Si into newly synthesized diatom frustules (Leblanc and Hutchins, 2005). This
technique allows for the diatom-specific analysis of primary production and for an
estimation of the contribution of diatom biomass to the sedimentary carbon
produced in the winter bloom. Here, we pair this measure of Si deposition with 02
evolution as a measure of primary production to investigate the productivity of the
winter bloom community and compare community Si:C ratios with those observed

during an early summer sampling.

Material and Methods

Sample Collection

Winter samples were collected in February 2010 aboard the CCGS Griffon
using a 153 um mesh Wisconsin type plankton net. Summer samples were collected
aboard the CCGS Limnos in June and July 2010 using a 20-um mesh plankton net.
Following collection, concentrated seston samples were maintained at 4° C in the
dark until use. Stations are plotted in Figure 1. Silica deposition and Oz evolution

experiments were performed using the same plankton net collected seston.

Silica Deposition Assays

Si deposition experiments were performed using a modified method
originally described by LeBlanc and Hutchins (2005) utilizing 2-(4-
pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)-
phenyl)oxazole (PDMPO), a fluorescent dye that is co-deposited with Si into newly
synthesized diatom frustules (Shimizu et al.,, 2001). Incubations were performed in
250 mL polycarbonate bottles (Nalgene), and 5 mL of concentrated seston was
added to 125 mL of 0.2um filtered water from the station from which the seston was
collected. PDMPO was then added to a final concentration of 0.125 pM. Following
incubation, samples were dispersed for PDMPO quantification and microscopic

taxonomic identification. All incubations were performed in triplicate.
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Figure 4.1. Map of sampling sites in occupied in this study. Sampling sites are noted
with Environment Canada station number and indicated as sites February (°) or

June/July (*). Station 84 was sampled in both seasons and is denoted as [I.
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Microscopy samples were filtered onto 0.1-um nominal pore-size 25-mm
diameter black polycarbonate filters (Millipore) then immediately frozen and stored
at -80°C until analysis. Slides were viewed on a Leica DMXRA epifluorescent
microscope with a Hammumatsu ORCA-ER camera using the Texas Red filter (Aex
520-600 nm; Aem 570-720 nm) to visualize chlorophyll autofluorescence and a long-
pass DAPI filter (Aex 340-380 nm; Aem >425 nm) to visualize PDMPO fluorescence. No
fewer than 200 cells were scored for PDMPO fluorescence on each slide. The
percentage of active Si depositing diatom filaments/colonies and individual cells
were determined, and taxonomic identifications were made. The camera was
controlled and micrographs were taken using Simple PCI software (Hammumatsu).
Following incubation, samples for the determination of Si deposition rate by PDMPO
quantification were collected onto 47mm diameter 0.22-um nominal pore-size
polycarbonate filters. Following filtration, filters were washed with 0.2-um filtered
lake water to remove exogenous PDMPO. Next, a 2 min incubation with 10% HCI
was followed by a 2 min incubation with MilliQ water (resistivity = 18 MQ-cm) to
osmotically lyse the diatom cells releasing any PDMPO remaining in vacuoles. After
a final rinse with filtered lake water, samples were flash frozen for transport. Next
frustules were dissolved via a one hour incubation in 4 mL 0.2 M NaOH in the dark
and then neutralized with 1 mL 1N HCIl. PDMPO in this solution was quantified on a
TD-700 laboratory flourometer (Aex 360-380nm; Aem 522-542nm) (Andover).
Standard Curves (r?=0.99988) were constructed using dye diluted with NaOH-HCL
frustule dissolution matrix. PDMPO concentration was converted to Si using the
conversion factor 3230:1::Si:PDMPO (mol:mol) (Leblanc and Hutchins, 2005). Si
deposition rates were normalized to chla. Si deposition L1 was calculating using
extracted chla filtered through 20 uM polycarbonate filter from 1m at the same

station.
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Measurement of Primary Productivity by Oxygen Evolution

02 evolution was measured using a Dissolved Oxygen electrode as a proxy
for carbon-fixation. Concentrated seston was placed into a temperature controlled
cuvette and exposed to a known light intensity during which the oxygen evolved in
the chamber was to be measured by a Clark-type Dissolved Oxygen electrode (Qubit
Systems) at the bottom of the cuvette. Seston was maintained in the dark for no less
than 30 minutes and was sparged with N2 gas to remove any dissolved O in the
sample immediately prior to experimentation. The material was exposed to light
intensities ranging from 5 to 400 pmol photons m-2 s-1. Oz evolution rates were
normalized to chla. Oz evolution rates were converted to C fixation assuming a
photosynthetic quotient (PQ) of 1 (Reynolds, 2006; Williams, 1998). Though we
realize the theoretical PQ of 1 is unlikely in this system, we have decided to use it in
this study because of the wide range of PQs (0.3 - 1.3) measured in Lake Erie
(Ostrom et al., 2005) and the lack of a published PQ for the winter Lake Erie

assemblage.

Chlorophyll a estimation

Extracted chla was determined by filtration onto 0.2-uM pore-size 47 mm
diameter polycarbonate filters (Millipore) after extraction (24 h, 4°C) in 90%
acetone. Extracted chla was measured using a Turner Designs 10AU flourometer

following the non-acidification protocol (Welschmeyer, 1994).

Statistical Analysis

Two-way repeated measures ANOVA analysis was used to determine
significant differences between rates measured in the summer and winter. A 95%
confidence interval was used. This analysis was performed for both O evolution

and Si deposition rates.
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Results

Si-deposition microscopy

Lake Erie diatoms actively depositing Si were visualized microscopically by
noting PDMPO fluorescence. Diatoms depositing PDMPO were visualized in
incubations from all tested sites in both seasons (Fig. 2). In agreement with previous
descriptions of the winter community, most of the diatoms observed to deposit Si
were Aulacoseira islandica (Fig 2 A, C). PDMPO fluorescence was observed in no less
than 90% of filaments or colonies (Table 1) and in between 25 and 10% of cells
(Table 1) in the winter samples. Diatom assemblages in summer samples were
dominated by Fragilaria spp. (Fig. 2B) and Asterionella spp. (Fig. 2D). 79% of total
diatom cells exhibited PDMPO fluorescence, including 80% of Fragilaria spp., 65%
of Asterionella spp., and 100% of Stephanodiscus spp. Over 90% of colonies observed

in the summer samples exhibited PDMPO fluorescence.

0z Evolution and Si deposition rates

The rates of primary production, resolved as O; evolution, and Si deposition
measured via PDMPO fluorescence were determined (Table 2). Measured rates of 0>
evolution were strongly significantly higher in the summer than in the winter
(p=0.019). Si deposition rates were also higher in the summer than in the winter
(p=0.082). Measured O: evolution rates ranged from 3.753 to 19.36 umol O; pg chla
-1 day -1 in the February samples, and from 31.18 to 112.64 pmol Oz pg chla -1 day !
in the summer. Si deposition rates were measured between 0.167 and 0.181 pmol Si
ug chla -1 d-1in the summer and 0.208 and 0.342 Si ug chl a -1 d -1 in the winter. For
incubations performed at summer stations 33 and 84, the PDMPO did not
accumulate beyond background fluorescence, likely because of low diatom biomass
in those samples. Low diatom densities observed microscopically confirm this

assertion (data not shown).
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Figure 4.2. False color micrographs showing PDMPO deposition in winter and spring
diatom communities. PDMPO flourescence is blue and chlorophyll autoflourescese
is shown red. Samples A, C and E were collected in February 2010. Samples A and E
were collected at station 84, sample C was collected at station 452. Samples B, D
and F were collected in July at station 1053. Samples E and F are 2% glutaraldehyde

killed controls.
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Table 4.1. Percentage of diatom cells and colonies exhibiting PDMPO fluorescence.

Values are presented as the mean #* SD. * indicates fewer than 200 cells were

present and counted.

Station % Fluorescent Cells % Fluorescent Colonies
Winter
452 17.5%2.2 91.8+4.8
84 10.4£0.5 90.6+2.3
1326 13.9£1.3 93.5+4.6
cache 25.6%4.5 96.2+0.2
Summer
849 100* 100*
33 100* 100*
84 100* 100*
1078 78.5%6.6 96.9+5.2
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Table 4.2. Oxygen evolution and Si deposition rates, as well as a ratio of Si:C fixation
measured from Lake Erie seston collected in winter or summer 2010. Si deposition
L-1 was calculating using extracted chla filtered through 20 uM polycarbonate filter

from 1m at the same station.

Station umol Oz umol Si umol Si Si:C fixation

ugchla-tday-! pgchla-day-! pgchla-1L-1 mmol:mol

Winter
452 3.840.1 0.18+0.1 0.13 48.2
84 19.4+1.9 0.14+0.1 0.24 7
1290 4.9+0.8 0.17 0.05 34
1053 17.3+£7.2 N/A N/A N/A
341 9.7+0.006 N/A N/A N/A
Summer
849 71.5%£7.9 0.21+0.1 0.05 3
33 112.6£2.2 BDL N/A BDL
84 31.2+2.4 BDL N/A BDL
1078 108.9+8.0 0.34+0.1 0.04 3
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Similarly, a Si deposition rate was not measured in the incubation performed using a
concentrated ice-associated algal community. This result is likely the result of
background fluorescence related to the sediment associated with these ice-

associated diatoms.

Discussion

High percentages of diatom filaments/colonies showing PDMPO fluorescence
observed in winter and summer samples are indicative of actively growing
populations in both seasons. A high percentage of diatom colonies depositing Si is
expected in an actively growing community because those diatoms that are not
growing should sink from the surface layer to be deposited in the benthos; indeed,
higher sinking rates have been observed during stationary growth of diatom
cultures (Titman and Kilham, 1976). The influence of a highly productive
community of phytoplankton that readily sinks upon cessation of growth on
seasonal hypoxia is clear. These blooms are likely a major source of the diatom
biomass observed in Lake Erie sediments.

Significantly higher primary productivity rates in the summer as compared
to the winter were not surprising as this finding agrees with observations from Lake
Baikal (Yoshida et al., 2003), a site in which seasonal Aulacoseira spp. blooms occur
in the winter. Si deposition rates measured in Lake Erie were also higher in the
summer than in the winter. This was a surprising result considering the relative
concentration of diatoms in the winter is much higher in the summer. A likely
reason for this result is due to differences in the diatom communities supported in
the different seasons. The centric diatoms present in the winter grow in connected
filaments maintaining established biomass at the surface for a longer period of time

compared to pennate diatoms.

93



Our results illustrate this assertion, with a lower percentage of fluorescent cells in
the winter (10-25%) than in the summer (78-100%) when pennate diatoms
dominate. This extra diatom biomass held at the surface in the winter is still
measured in chla biomass estimates, thus skewing our results lower.

Although both the Si and C fixation rates were higher in the summer than
winter, the calculated Si:C fixation ratio did not remain constant but rather was
higher in the winter than the summer (Table 2). While this result is not surprising
because of the high cellular Si:C ratio of A. islandica (Sicko-Goad et al., 1984), it has
important implications to C export to the benthos and seasonal hypoxia formation.
A consequence of this higher Si:C ratio is a diatom community disposed to higher
sinking rates. Indeed, higher Si:C ratios have been connected to higher sinking rates
in marine diatoms (Hutchins and Bruland, 1998). Pair this finding with others
showing centric filamentous diatoms have the highest Si:C ratios (Sicko-Goad et al.,
1984) and sinking rates (Gibson, 1984; Titman and Kilham, 1976) among
freshwater diatoms and the winter Lake Erie assemblage, comprising primarily of
these diatoms may be an efficient shuttle of C and Si to the benthos. Also
contributing to the difference between Si:C fixation ratio differences in the summer
and winter is the higher proportion of non-diatom primary producers in the
summer samples.

The size and scope of the winter diatom bloom also appears to influence the
composition of the summer assemblage through the sequestration of available silica,
facilitating a shift from diatoms with high Si requirements in the winter and early
spring to species with lower Si requirements in the summer. Twiss et al. (2010)
described a drawdown in dissolved SiO; over the course of the winter, which is
likely the result of high winter diatom activity. Indeed, Si limitation of diatom
growth has been observed post-Dreissena in the central basin of Lake Erie (Moon
and Carrick, 2007). Furthermore, A. islandica is noted for having a high Si
requirement with a silica growth optima of 0.6 mg L-1 (Barbiero et al,, 2006) and a

Si:C ratio (mol:mol) >1 (Sicko-Goad et al., 1984); pennate diatoms common in the
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summer, such as Fragilaria spp. and Asterionella spp., have lower Si optimums
(Barbiero et al., 2006). It appears then that the winter bloom draws down Si
concentrations, eventually causing Si limitation and resulting in a shift from centric
to pennate diatoms. Though neither these results nor concurrent microcosm assays
(data not shown) show evidence of Si limitation in either season, qualitative
evidence of differing Si needs in the winter and summer assemblages was observed
through higher per volume Si deposition rates (Table 2).

PDMPO fluorescence in the centric diatoms prevalent in the winter was bright and
substantial (Fig. 2 A,C), while the fluorescence observed in the summer was
noticeably less (Fig. 2 B,D).

With the exception of the high biomass ice associated communities, higher
concentrations of diatom biomass have been in open water stations than in ice-
covered sites (Twiss et al.,, 2010). This observation is critical considering the
predicted temperature increases in current climate change models, because
reduction in ice cover is predicted across the Great Lakes (Assel et al., 2003) as a
result along with the rise in air temperature during the winter months. In this
scenario, the reduction in ice cover would allow for increased diatom production,
and potentially, for an earlier onset and more severe hypoxia in Lake Erie. A rough
estimate of diatom production was calculated for an ice-free central basin. Using the
previously measured A. islandica cellular Si:C ratio (1.54, mol:mol, Sicko-Goad et al,,
1984), we estimate a diatom specific rate of 8,421 kg C solar day-! in the surface 1
m of the maximum observed hypoxic area in the central basin (10,000 km?2). Clearly,
not all diatom biomass represented in this estimation would export to the benthos.
Nevertheless, this example illustrates the substantial impact winter diatom primary
productivity can have in this system.

This study confirms the hypothesis that the diatom population observed in
Lake Erie during winter is actively growing and provides insight into how it may
shape spring events through the assimilation (drawdown) of Si. While this finding

may seem evident based on the large concentration of phytoplankton biomass
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observed in the winter, confirmation of this hypothesis is critical to the continuing
studies describing how the activity of this diatom bloom affects phenomena
observed in the spring and summer in the Lake Erie. Finally, these data contribute to
the growing body of evidence concerning the potential for Lake Erie’s winter diatom

bloom to influence summer hypoxia and “dead zone” formation in Lake Erie.
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SECTION V

CONCLUSIONS
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This body of work further illustrates how the interactions between
microorganisms and nutrients influence the Lake Erie ecosystem. The international
scientific community and the governments of the United States and Canada have
identified harmful algal blooms and seasonal hypoxia as areas of ecological concern
in Lake Erie (IJC, 1989) and have made research in these areas a priority. This
priority is the result of the significant economic and ecological impacts these events
have on Lake Erie. Hypoxia in the central basin of Lake Erie has detrimental effects
on the success of the lake fishery through the pressure placed on small fish and
benthic invertebrates (Rabalais et al., 2002; Wilhelm et al., 2006), and
cyanobacterial bloom events foul beaches and produce potentially harmful toxins
(Brittain et al., 2000; Carmichael, 2001). In this study we set out to understand how
three specific phenomena influence these larger issues. First, we used a new
understanding of how P is partitioned in phytoplankton (Sanudo -Wilhelmy et al,,
2004) cells to produce more representative P quotas in the bloom forming
cyanobacterium Microcystis. Next, we examined the influence of agricultural
herbicide use on the success of the potentially toxic cyanobacterial community in
Lake Erie. Finally, we explored the activity of the Lake Erie winter diatom

community, and its potential influence on seasonal hypoxia.
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From these studies we have determined:

1.

Surface bound P comprises a significant and stable proportion of the total
cellular P pool in the cyanobacterium Microcystis aeruginosa, and that the
cellular P quota of Microcystis is plastic. The metabolic plasticity we describe
may contribute this cyanobacterium to survive in a range of environments

until conditions improve and bloom formation can occur.

Microcystis cellular P quotas incorporated into currently harmful algal bloom

modeling efforts overestimate the P quotas of this organism.

Glyphosate is able to influence phytoplankton community structure in Lake
Erie, negatively through herbicidal effects, and positively as a nutrient
source.
a. Planktothrix is more resistant to glyphosate toxicity than Microcystis.
b. Glyphosate and derived molecules can be used as sources of P and N

by the microbial community.

Microorganisms capable of glyphosate metabolism are present in Lake Erie,

and this community is largely made up of heterotrophic bacteria.
The winter Lake Erie diatom community is active and is a source of biogenic

carbon to the benthos with a potentially significant impact on seasonal

hypoxia.
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These conclusions provide valuable insight into how microbes influence the flow of
nutrients and, in turn, how nutrients affect plankton community structure in Lake
Erie, but these results have also raised a new set of interesting questions. While we
have shown that surface-absorbed P is a significant proportion of the total P pool in
Microcystis, the fate of this P is not clear. Further study will be needed to determine
if this P is accessible to the cell or if the presence of this P is solely a byproduct of the
presence of dissolved P in the water.

We have shown glyphosate to be a potential nutrient source to microbes in
the Lake Erie system, but the nature of glyphosate in this system is unknown. While
we know that bacteria possessing C-P lyase are present in Lake Erie, it has not yet
been determined if this enzyme is being actively used in the lake. It may be that
another, as yet undetermined, glyphosate breakdown pathway is active in this
system. We have also shown glyphosate community structure in Lake Erie, and
have provided potential mechanisms for this control, but we can only speculate as to
the mechanism in the environment. Future work should focus on detailing which
nutrients glyphosate is providing in the lake, and the food chain through which
these nutrients are passed.

Our study has shown the high abundances of Aulacoseira islandica found in
Lake Erie in the winter to be active, but further characterization of this diatom is
needed. Indeed, the specific details of how Aulacoseira is so successful under the ice
in Lake Erie are unknown and detailed genomic and physiological studies are
needed to characterize this organism.

Finally, while this study focused on specific details of how the interaction
between plankton and nutrient leads to the formation, of hypoxia and algal blooms,
it is critical to understand that these are part of a much larger problem. Given the
overall importance of Lake Erie to the more than 11 million people who live near it,
the successful rehabilitation of the lake-wide ecosystem is critical. With that it is our
hope that this study is able to inform the decisions of lake managers in the United

States and Canada and lead to the improved overall health of Lake Erie.
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