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ABSTRACT 
 
 
 
 

    In early 1970s, it was said that Lake Erie was dead. In 1950s and 1970s, the water of 

the Lake was pea-green colored due to excessive phosphorous from sewage and runoffs 

from farmlands and homeowners. There were many closed beaches and fish from the 

Lake was not edible.  However, water quality has improved dramatically since the Clean 

Water Act of 1972.  The pace of residential and commercial development around the 

shoreline of Lake Erie increased considerably following substantial improvements in the 

Lake’s water quality and clarity.  A double-edged sword exists since increases in water 

quality are followed by increases in residential and lake-related development, which in 

turn can degrade the lake and the amenities it provides.  In fact, although the phosphorous 

level declined in 1980s, we are observing an increasing trend starting from 1990s and the 

trend continues until today.  As for water clarity, although its level hit the peak in 1995, 

we observe the decreasing trend afterwards.  In this study, we focus on the effects of 

water quality on housing values to evaluate water quality-housing value as the 

relationship on the one side of the double-edged sword.   

     Both the first and the second stage of hedonic price analysis are conducted with 

identified housing submarkets by using Hierarchical Clustering with quantized similarity 

measures in the region including Erie, Lorain, Ottawa and Sandusky Counties located 
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along Lake Erie. We use both individual houses and census block groups as the smallest 

building blocks of the clusters and compare the clustering and hedonic results for both 

cases.  

     Fecal coliform counts and secchi disk depth readings measuring water clarity are used 

as water quality variables. In order to overcome the spatio-temporal aspects of secchi 

depth disk reading data, kriging was used for spatial prediction.  Robust Lagrange 

Multiplier test indicates that spatial error models are appropriate for the estimation of 

hedonic price functions in each submarket. We found that secchi disk depth readings 

variables are positive significantly influencing housing prices in most of the clusters 

while mixed results are found for fecal coliform counts.  

     Marginal implicit prices (MIP) are computed based on the estimated results of the first 

stage hedonic price functions.  As for the houses whose prices are negatively influenced 

by fecal, the MIP for reducing the amount of bacterial counts is estimated as -21.6 dollars 

(in 1996$), and -30.5 dollars for the houses affected by fecal statistically significantly. 

For water clarity, MIP is estimated as 40.5 dollars for the houses whose housing price is 

positively affected by the variable, and it is 56 dollars for the houses significantly 

affected by water clarity. 

     Demand functions with different functional forms are estimated with two-stage least 

squares with submarket dummy variables.  We found that fecal coliform and water clarity 

are substitutes to each other while the distance to the closest beach is a complement to 

fecal coliform and substitute to water clarity. While computed welfare changes for fecal 

coliform by using non-linear demand functions are very small, the benefit of the  
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improvement of water clarity by 25 centimeters to be estimated 230 dollars per 

household. We found that the welfare changes are larger for the degradation of water 

quality compared to the improvements of water quality in the same amount. 

       We further analyzed the welfare changes by using demand functions derived 

specifically for each household. Welfare changes based on the individual demand 

functions were computed by integrating under each demand curve for multiple scenarios. 

If we consider our SIG Fecal data represents 33 percent of entire population in four 

counties, the total estimated net benefit was derived as 51,934,180 dollars for targeting 

155 fecal coliform counts. The total net welfare gain was computed as 899,010,835 

dollars for targeting 245 centimeters of water clarity.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

 
     Lake Erie is one of the five large freshwater lakes in North America and the 

13th largest natural lake in the world.  In the early 1970s, it was said Lake Erie was dead. 

The Lake was experiencing algae boom due to excessive phosphorous from sewage and 

runoffs from farmlands and homeowners. In 1950s and 1970s, the water of the Lake was 

pea-green colored. There were many closed beaches and fish from the Lake was not 

eatable.  In 1969, Cuyahoga River which flows into Lake Eire through Cleveland caught 

on fire due to its polluted water covered with oil.  This event called policy makers’ 

attention and led to the Great Lake Water Quality Act and Clean Water Act in the 1970s.  

    The sources of pollution back then were point source pollution such as industrial water 

discharge and emission from sewage treatment plants as well as non-point source 

pollution such as runoff from upstream agricultural lands containing fertilizers and 

pesticides.   
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     Since the Clean Water Act of 1972, point source pollution has been controlled well.  

Nearly 100 percent of all industrial plants use control measures to reduce their toxic 

discharge, and the number of sewage treatment plants has doubled.  Water quality of 

Lake Erie has improved since then. In 1983, phosphorous level in the Lake met its 

standard.  

    The pace of residential and commercial development around the shoreline of Lake Erie 

increased considerably following substantial improvements in the lake’s water quality 

and clarity in the 1970’s and 1980’s.  Between 1982 and 1997, the amount of urban land 

use in the eight Ohio counties bordering Lake Erie increased 24.4%, an increase of 

112,500 acres (USDA, National Resources Inventory).  A significant portion of this 

development appears tied to Lake Erie.  For example, the amount of urban development 

in Ottawa County, a county that contains a number of lake amenities and recreational 

sites, increased 53% during this fifteen year time period.  

    The improvement in water quality enhanced the urban development along lakeshore 

counties. On the other hand, the impacts of urbanization and development in coastal areas 

threaten the very resources that make these areas attractive as places to live. The 

cumulative effects of non-point source pollution on coastal waters and aquatic life is a 

critical and increasing concern both nationally and in the Lake Erie watershed.  Like 

many streams and rivers in the U.S., sedimentation and hydro-modification are cited as 

primary non-point sources affecting Lake Erie tributaries (Ohio EPA, 1996).  Of 

particular concern is urban storm water pollution, which is fast becoming the most 

serious type of water pollution affecting Ohio’s streams and near shore areas.  This 
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source of non-point pollution has been driven by the conversion of farmland and forests 

to urban uses.  These trends point to a complex relationship between lake quality and 

surrounding urban land development.  Increases in lake quality are followed by increases 

in lake-related development, which in turn can degrade the lake and the amenities it 

provides.  This double-edged sword presents policymakers with a tough challenge: how 

to attain improvements in lake quality and manage the increased lake-related 

development that often follows.  In fact, according to the study conducted by the 

USEPA's Great Lakes National Program Office, phosphorus level began to increase again 

after the reduction in 1980s and the increasing trend has continued to the present day 

(USEPA (2006)). Water clarity has also been decreasing up to the present day after 

marking the peak value in 1995.   

      In this research we focus on the linkage between lake quality and housing values and 

how the lake quality influences the demand for residential housing.  Through the use of 

extensive data available on housing transactions in the Lake Erie watershed, we will 

estimate the effects of changes in water quality on housing prices by using the first stage 

of hedonic price estimation, and demand for water quality and welfare changes due to the 

changes in water quality by conducting the second stage of hedonic price analysis.      

     Cluster Analysis is adopted in order to identify distinguishable submarkets existing in 

the extent of our housing data.  Four similarity measures which incorporate the mixed 

(continuous and categorical) features of our clustering variables are used in order to 

implement hierarchical clustering.  
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     Two indicators of water quality are included. One is fecal coliform counts which are a 

basis for beach closing and posting of warning on each beach, and the other is secchi disk 

depth readings which are an indicator of water clarity of the lake water. Kriging is done 

in order to overcome the handling of secchi disk data which are collected over different 

points in time and space.  

     Given ten identified clusters, we estimate spatial hedonic functions for each cluster. 

Multiple robust Language Multiplier (LM) tests are conducted and appropriate spatial 

models and weight matrices specifications are chosen.  

     The estimated results are used to compute the marginal willingness to pay (WTP) or 

implicit prices of water quality in the area for different sets of houses whose sales prices 

are affected by water quality. In other words, we know how much individual house 

owners are willing to pay for one unit increase in water clarity, or one unit decrease in 

bacterial counts.     

     The procedure for estimating demand function in order to compute the welfare change 

for a non-marginal change in water quality will be implemented in the second stage of the 

hedonic method. Demand identification problem is dealt with estimation of multiple 

hedonic price functions from separate submarkets determined by Cluster Analysis. When 

hedonic price function is non-linear, households face to choose quantity and price of the 

water quality at the same time. In order to resolve the endogeneity problem, two-stage 

least squares estimation method with instrumental variables (IVs) will be employed.  
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     Identified ten clusters are considered to form separate housing submarkets and 

included into the second stage hedonic analysis in this research and demand functions are 

identified. Welfare changes due to the non-marginal changes in water quality are 

computed as the last stage of this hedonic study.  Furthermore, we derived the individual 

demand functions and the individual welfare changes for multiple scenarios of water 

quality changes. The welfare changes are calculated by using the actual water quality 

values each household is experiencing. The total net welfare gains for the relevant 

population are reported in the end. 

     Hedonic price analysis reveals the value of environmental amenity (water quality in 

our case) through the preference of house seekers/owners and transactions in housing 

market.  Therefore, the benefits and welfare measures derived in the end of the hedonic 

analysis do not reflect all aspects of the value of environmental amenity, but capture 

simply some portions that are perceived by home purchasers. Therefore, we have to 

emphasize that the benefits we estimate are based on the house purchasers’ perception 

regarding the Lake water quality, and do not include the benefits possibly obtained in 

other ways.  

     Furthermore, the benefits are measured from a human point of view, not lake 

biological point of view. In other words, what is desired by human may not coincide with 

the ideal environment for the Lake and the creatures living there.  In order to capture the 

entire service an environmental amenity provides, we should conduct other types of 

research, such as Travel Cost Method as the other revealed preference method and/or 

Contingent Valuation Method or Conjoint Analysis as stated preference methods. 
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Therefore, it is important to keep in mind when we interpret the results of this research 

that the welfare measures we estimated in the end of the second stage hedonic analysis 

are partial benefits we obtain from Lake Erie water and its quality. 

     The main contributions of our study include 1) an introduction of similarity measures 

which handle mixed featured variables more precisely than widely used Euclidean 

distance and implementation of hierarchical clustering with suggested similarity 

measures, 2) comparison of submarket definition by using two different building blocks, 

individual house and census block groups, 3) spatial data handling of water clarity data 

by using kriging method,  4)  estimations of marginal WTP for water quality on each 

beach along Lake Erie by using spatial error models, 5) derivation of demand functions 

for water quality and calculation of welfare changes due to non-marginal changes in 

water quality and 6)  derivation of individual demand function and welfare changes based 

on individual specific variables and computation of total net benefits of water quality for 

relevant population. 
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CHAPTER 2 
 

OVERVIEW OF THE HEDONIC METHOD 
 
 
 

 
2.1  Related Works on Hedonic Method  
 
    Many hedonic price studies have conducted in the past. We introduce major studies 

using water quality as well as other environmental variables in this section.  The number 

of hedonic studies involving water quality itself is small comparing to air-quality studies. 

Hedonic studies with water quality considering spatial effects are very limited.  

 
2.1.1  Applications of Hedonic Method with Environmental Variables 
 
    Boyle and Kiel conducted a survey on house price hedonic studies considering the 

impact of environmental externalities (Boyle and Kiel (2001)). According to their survey, 

hedonic pricing model has been used to evaluate the impacts of environmental goods 

such as air quality, water quality, undesirable land use and multiple environmental goods.  

    As we already mentioned earlier, the earliest hedonic air quality study was done by 

Ridker and Henning (1967). Sulfation levels were used in the final report. They report 

that a decrease in sulfation of 0.25 mg/ 100 cm2/day would increase values of owner-

occupied single family houses by $83 - $245 in 1960 dollars.  Wieand (1973) used 

suspended particulates, sulfur dioxide and sulfur trioxide as air quality measures and 
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estimated their effects on monthly rent per acre of land by using Ridker and Henning’s 

data. He showed that there is no statistically significant effect of air pollution on monthly 

rent. Smith and Deyak (1975) used suspended particulates as air quality measure and 

looked at eighty five central cities in U.S. They did not find statistically significant effect. 

Harrison and Rubinfeld (1978) included squared NO2 concentration from a 

meteorological model. The estimated results for NO2 concentration were negative and 

statistically significant. Nelson (1978) used particulate concentration and summer oxidant 

concentration as pollution measures. The coefficient for particulate concentration was 

negative and statistically significant. Implicit prices calculated were $57.61 for 

particulates and - $14.11 for oxidants in 1970 dollars. Li and brown (1980) included 

sulfur dioxides and total suspended particulates as environmental variables and obtained 

marginally statistically significant result for both variables in one of the models 

estimated. Palmquist (1982) included total suspended particulates (TSP), nitrogen 

dioxide, ozone and sulfur as air quality measures, used house sales prices as the 

dependent variable and obtained mixed sign and statistical significant results. Palmquist 

(1983) included pollution measures as an index instead of four different measures as in 

his 1982 study and got statistically significant results in six of the fourteen cities. 

Murdoch and Thayer (1988) used mean visibility and sales data and obtained positive 

statistically significant result. Graves et al (1988) included particulates and an index of 

visibility and reported negative and significant results for particulates and greatly various 

results for the index of visibility. They also mentioned that hedonic results are sensitive 

to the choices of right hand side variables. Zabel and Kiel (2000) used the arithmetic 
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mean of nitrogen dioxide readings and sulfur dioxide readings, and the second daily 

maximum hourly readings for ozone and total suspended particulates for four urban areas 

in the U.S. over five time periods. They obtained mixed results for pollution coefficients.  

    Anselin (2004) studied effect of air quality on house price in L.A. in 1999 by using 

different spatial interpolation methods (Thiessen Polygon, Inverse Distance Weight and 

Kriging) for O3 readings from 27 monitoring stations. They concluded that different 

spatial interpolation methods give different estimated results and kriging is the best 

measure to include. 

    Blomquist (1974) included the effective distance to an electrical power plant as the 

environmental variable. Effective distance equals to distance if the distance was less than 

11,500 feet and equal to 11,500 if the distance is greater than the value. If the property 

was 10% further away from the plant, an average value of the property increased by 0.9% 

within 11,500 feet of the plant. Nelson (1981) studied the impact of the nuclear power 

plant accident at Three Mile Island on house prices. He did not obtain statistically 

significant results on the value of interest. Gamble and Downing (1982) also conducted a 

study on nuclear reactors. They looked at two cases, one plant without accident and 

another (Three Mile Island) with accident. For the first case, two variables for the 

environmental measure were included. One dummy variable which equals to one if the 

plant was visible from the house and a variable of distance measure from the plant. They 

did not find statistically significance for either variable. For the second case, distance 

from the house to the plant, dummy variable for whether the house was purchased after 

the accident, and the interaction of the two variables were included. Distance from the 
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plant was significant before the accident, but not after. McClelland, Shulze and Hurd 

(1990) looked at the perceived risk of living near a hazardous waste site. Their study is 

based on mail survey and authors developed an estimate for perceived risk. An increase 

of 10% in the proportion of survey participants rating an area as “high risk” would 

decrease on average nominal sales price of about $2,084.  Closing the landfill increased 

average house value by about $5,001. After closing the land fill, average house prices 

were estimated $4,793 lower than the case with no perceived health risk.  

    Other undesired land uses employed in hedonic studies are Superfund site (Kohlhase 

(1991), Keil (1995) ), landfill (Nelson, Genereux and Genereux (1992), Reichert, Small 

and Mohanty (1992), Smolen, Moore and Conway (1992)),  hazardous waste sites 

(Michaels and Smith (1990), Ketkar (1992)), petroleum refineries (Flower and Ragas 

(1994)), incinator (Keil and McClain (1995)), lead smelter (Dale et al. (1999)), and 

petroleum pipeline rupture (Simons (1999)). 

 

2.1.2  Applications of Hedonic Method with Water Quality Variables 

    David (1968) is the first study of hedonic water quality analysis. She designated the 

water quality in each lake as poor, moderate or good based on the specialists’ opinions 

for sixty artificial Wisconsin lakes. Dependent variables used are per acre value of land, 

per acre value of improvements, per acre number of improvements, and land value 

calculated as a weighted sum that relates per acre land value to per acre value of 

improvements and per acre number of improvements. She concluded that property on 

more polluted lakes was less valuable than property adjacent to cleaner lakes.  
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    Epp and Al-Ani (1979) incorporated water pH and interaction between pH and 

percentage change in population for the years 1960-1970 as the water quality variables as 

well as perceived water quality and the interaction of perceived water quality with 

percentage change in population. Property values in Pennsylvania from 1969 to 1976 

were dependent variable. Independent variables include flood hazard, lot size, the number 

of rooms, potential employment, school expenditure per pupil and age of the house. They 

concluded that both measures of water quality have statistically significant effect on 

property values.  A one-point increase in pH would result in $653.96 (1972 $s) increase 

in the mean sales value of the properties. The interaction variable was significant only for 

good quality steam case.  They also found that for the case of poor quality streams, 

property characteristics other than water quality variables have greater importance to 

purchaser of the property. 

    Young (1984) included one to ten water quality ratings by local officials and dummy 

variable indicating if the house is adjacent to St. Albans Bay where a malfunctioning 

waster treatment plant had caused pollution problems.  The estimation result shows that a 

location within the bay reduced property values by an average of 20%. If the properties 

are adjacent to the bay, the value was an average of $4,700 less than equivalent 

properties.  
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    Steinnes (1992) studied fifty-three Minnesota lakes by using secchi depth disk readings 

as his water quality measure. The author used three dependent variables, total price of all 

lots on the lake, average price per lot on the lake and average price per front foot of lot on 

the lake. He found that each additional foot of clarity would raise the value of a lot by 

$206. 

    Mendelsohn et al. (1992) looked at PCB pollution in the New Bedford, Massachusetts 

harbor. They employed sales data from 1969 to 1988 and used panel data approach.  

They included a dummy variable to indicate if the sale occurred before or after the PCB 

pollution and interactions between the year and two dummy variables to indicate homes 

whose nearest waters were affected by PCB pollution.  The properties affected by PCB 

pollution had $7,000 to $10,000 (1989 $s) lower values. 

    Michael, Boyle and Bouchard (1996) used secchi depth disk readings of minimum 

clarity for thirty-four Maine lakes. They used property sales records between January 1st, 

1990 and June 1st, 1994. They found that a one-meter improvement in lake clarity would 

increase property prices by anywhere from $11 to $200 per foot frontage. 

    These studies have generally demonstrated a positive relationship between water 

quality/lake amenities and residential property values. But none of them paid enough 

attention to the spatial feature of water quality data. As the study by Anselin (2004) 

indicates, the estimated result could change depending on how researchers treat and 

include environmental variables in their estimation. Therefore, we would like to take 

closer look at spatial and spatio-temporal features of water quality data and study how 

much estimated results could be affected by including different type of data. Furthermore, 
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none of above studies has extended the analysis to consider the implications of these 

positively valued lake attributes for future development patterns and for lake and land use 

policies.  This research will do both by combining the traditional hedonic model with 

experiments that will examine various water quality and lake amenity scenarios and that 

will allow us to extend the analysis to consider these additional questions. 

 

2.1.3  Applications of Spatial Hedonic Method 

    Kim, Phipps and Anselin (2003) developed spatial-econometric hedonic housing price 

model to estimate for the Seoul metropolitan area to measure the marginal value of 

improvements in sulfur dioxide (SO2) and nitrogen dioxide (NOx) concentration. Their 

test result favored the spatial-lag model over the spatial error model. The estimated model 

is 

2 2 3 3ρ ε= + + + +1 1P WP X β X β X β  

where P  is the vector of housing prices, ρ  is a spatial autocorrelation parameter, W  is a 

n by n spatial weight matrix (where n is the number of observations), 1X is a matrix for 

structural characteristics, 2X  is a matrix for neighborhood characteristics, and 3X  is a 

matrix with observations on environmental quality variables, with e assumed to be a 

vector of independent and identically distributed (i.i.d.) error terms.  
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     The authors used semi-log specification and compared the estimated results from four 

different estimation methods, OLS, ML, Spatial two-stage-least squares (S-2SLS), and 

heteroskedastic robust spatial two-stage-least squares (robust S-2SLS). They found that 

Marginal WTP for a permanent 4% improvement in air quality is about $2,333 for 

owners by using robust S-2SLS. They also found that OLS overestimates the welfare 

measure. 

    Leggett and Bockstael (2000) employed spatial error model with entries of weight 

matrix being zero if the distance between two houses exceed one mile.  Inverse distance-

weighted average of fecal coliform counts was used as their water quality measure and 

controlled for emitter effects by including straight-line distance to the nearest sewage 

treatment plant to investigate the influence of water quality on residential property values 

of houses along the Chesapeake Bay coastline. They found that a change of 100 fecal 

coliform count /100 mL resulted in a change in property prices of about 1.5%.  

    Beron et.al. (2003) implemented spatial error model by incorporating particulate 

matter of size 10 microns or less (PM 10) as the air quality variable. They also controlled 

heterogeneity in the model by including the quadratic expansion of the X, Y coordinates 

to model the spatial trend. The air quality was proved to be significantly affecting the 

housing price in four counties in Southern California. 
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2.2  First Stage Hedonic Method 
 
    A differentiated good is a good which is composed of multiple characteristics. If the 

good is a computer, its characteristics include CPU, RAM, OS, memory, and more. When 

we talk about a house as the good, the characteristics contains housing characteristics 

such as size of the house, size of the lot, number of bedrooms, number of bathrooms, and 

size of the garage, as well as neighborhood and proximity characteristics such as school 

district ranking, average income level of the neighborhood, crime rate, proximity to 

major cities and so forth.  The hedonic price method is a technique to estimate implicit 

prices of the characteristics of a differentiated good.  The partial derivative of the 

estimated hedonic price function with respect to a characteristic gives the marginal 

implicit price. The marginal implicit price indicates how much the price of the good is 

affected by one unit change in the characteristic. We focus on housing markets in the 

following sections and consider the case where the environmental quality around the 

house is considered one of the characteristics determining the housing price. 

 
2.2.1  Theory 
 
    Let Z be a vector of housing characteristics, consisting of 1 2 3 1 2, ,..., , ,z z z E E where kE

represents environmental variables. The hedonic price function is expressed as 

1 2 1 2( ) ( , ,..., , , )nP f z z z E E=Z . This is an equilibrium price schedule for the differentiated 

good derived under the assumption that the good is sold in a perfectly competitive market 

with the interactions of many consumers and producers.  It is important to note that the 

entire price schedule ( )P Z is exogenous to the consumers, but consumers can determine 
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how much they pay for the good by choosing which good (e.g. house) with certain 

characteristics to purchase (Taylor 2003).  Assume now that an individual purchases only 

one house in a certain time period. The consumer j’s utility function can be written with 

two parts, a house with various characteristics and the numeraire good, X given her 

demographic characteristics C. 

                                                      ( , ; )j j jU U X= Z C                           (2.1)     

    Since we assume that the consumer purchases only one unit of the good, her budget 

constraint can be expressed as the separable form as follows. 

                                                         ( )jY P X= +Z                                         (2.2) 

Plugging (2.2) into (2.1) gives 

                                               1 2 1 2( , ,..., , , , ( ))nU U z z z E E Y P= − Z    .             (2.3) 

Inverting (2.3) by  holding all constant except for the characteristics i gives us a bid curve 

which provides the maximum amount the individual would pay to obtain the specific 

house as a function of   or i kz E , *  and *,  where *  i iU− −Z Z indicates the optimal level 

of other characteristics chosen and *U represent the maximized level of utility as the 

solution to utility maximization problem (Freeman 1993).  The bid function can be 

expressed as 

 

                                                           ( ; *, *, , )i i i iB B z U Y−= Z C .                             (2.4) 
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  Since we do not control for individual characteristics such as income and preference in 

the first stage of hedonic method,  we can derive a different bid function for each 

individual.  Maximizing (2.1) subject to the budget constraint (2.2) gives the condition 

for an individual to choose the levels of each characteristic as follows. 

 

                                

/ ( )
/

i

i

U z P
U X z
∂ ∂ ∂

=
∂ ∂ ∂

Z                             (2.5) 

    Similarly, firms’ offer curves can be derived as follows. A farm maximizes their 

profits * ( ) ( , , )Q P C QΠ = −Z Z S , where Q is the number of unites of Z the firm 

produces, C(.) is a cost function, S is the firm’s characteristics. We assume that each firm 

has a different cost function.  By inverting the profit function at the optimal level, we can 

derive the offer function as 

                              ( ; *, *, *, )i i i iC C z Q −= ΠZ S                            (2.6) 

where *Π is the maximum level of profits.  A hedonic price function is derived as a 

double envelope of the sets of bid and offer functions (Rosen 1974). The illustration is 

shown in Figure 2.1.  In Figure 2.1, bid and offer functions for the housing characteristics 

i for two consumers and firms are shown. 
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Figure 2.1.  Hedonic Price Function for Characteristic i  
as the Envelope of Bid and Offer Functions. 

 
 
    Implicit price function can be derived by taking a derivative of the hedonic price 

function with respect to zi .  For the given level of zi (e.g. zi1 for consumer 1 in Figure 

2.1.), we can recover one point on the implicit price function where individual 

willingness to pay function intersect (See Figure 2.2.). It is the point A in Figure 2.2 for 

individual 1 and point B for 2. Point A represents the point where the condition in (2.5) is 

met and is equal to the marginal willingness to pay (WTP) of consumer 1 for the 

characteristic i. bij is marginal bid or WTP function. It is also equivalent to an inverse 

compensated demand function for the characteristic i and shows the change in WTP for zi 

for the marginal change in quantity of zi , holding utility at the maximized level and all 
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other characteristics constant (Taylor, 2003).  Since we do not control for the individual 

characteristics in the first stage, we obtain multiple points on the implicit price function 

for each individual. However, due to the lack of information for determining further the 

shape of the marginal bid function, all we can obtain at this point is not a function bij as 

depicted as dotted line, but simply a point on implicit price function such as point A and 

B.  Determination of function bij is dealt in section 2.4 below.  

 

 

 
 
 

Figure 2.2  Implicit Price Function and Individual Willingness to Pay 
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2.2.2  The Model 
 
    Sales prices, household or tax assessor values, and rental prices of the properties are 

typically used as the dependent variable of the hedonic price function.   Independent 

variables in hedonic price function are the ones considered to affect housing prices. As 

we stated in the previous section, consumer and producers’ characteristics do not enter in 

the regression.  

    General hedonic price models have employed different functional forms to estimate the 

effects of independent variables (housing structures, neighborhood environments, 

proximity to places, other variables of interests such as environmental variables and 

crime rate on property values. General form could be expressed as  

                                                      ( , )P P= H, N, D E                                       (2.7) 

where P is the sales price of a house, H is structural and property characteristics of the 

house, such as number of bedrooms and lot sizes, N represents neighborhood 

characteristics, such as school district ranking, median income in a census block group, 

racial composition, D is proximity to places, such as proximity to urban center, big cities 

and beaches, and E represents environmental variables or other variables of interests.     

     The possible functional forms for the hedonic price function are listed in Table 2.1.   

According to the study on functional form by Cropper, Deck and McConnell (1988), 

when all attributes of housing are observed without error, the complicated functional 

forms, such as quadratic, linear Box-Cox, and quadratic box-Cox can be used to estimate 

implicit prices more accurately. However, when some variables are not observed or are 

replaced by proxy variables, simpler forms such as linear, semi-log, double-log and linear 
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Box-Cox are preferred since the quadratic and quadratic Box-Cox produced biased 

estimates of the marginal prices. They concluded that linear Box-Cox is the most 

preferable functional form since it provides accurate marginal price estimates when all 

attributes are measured correctly and also performs well in the presence of mis-

specification of the hedonic function.  

 

 

 

 

Table 2.1  List of possible hedonic price functional forms 
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2.3  Spatial Hedonic Price Model 

     Whenever we handle observation which is spatially organized in cross-section, we 

should consider spatial autocorrelation since the existence of spatial autocorrelation 

implies a lack of independence across observations and the estimates with ordinary least 

squares could be biased and inconsistent. Anselin and Bera (1998) explain the spatial 

autocorrelation and its importance as follows. 

 
 “Spatial autocorrelation can be loosely defined as the coincidence of values  

similarity with locational similarity. … The existence of positive spatial  

autocorrelation implies that a sample contains less information than an  

uncorrelated counterpart. In order to properly carry out statistical inference, this  

loss of information must be explicitly acknowledged in estimation and diagnostics  

tests.”  

    In the following sections, we go over the statistical tests to determine the appropriate 

spatial model and specification of spatial lag and error models. 

 

2.3.1 Diagnostic Tests for Spatial Dependence  

    Multiple diagnostic tests for spatial dependence have developed. Among them are 

Moran’s I test, Rao score (RS) test, likelihood ratio (LR) test, Wald test and Lagrange 

multiplier (LM) tests (Anselin and Bera, 1998).  In this section, we introduce the robust 

LM test reported in Anselin et.al (1996) since this test is computationally simple and 

most robust among others.  Robust LM test is based on OLS residuals, and is for spatial 

error autocorrelation in the presence of a spatially lagged dependent variable and for 

spatial lag dependence in the presence of spatial error autocorrelation (Anselin et.al., 

1996). 
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    We now consider a spatial autoregressive model with a spatial autoregressive 

disturbance expressed as follows 

                                                
1

2
2~ (0, )

P W P Z u
u W u

N I

ρ β
λ ε

ε σ

= + +
= +                           (2.8) 

where P is (N x 1) vector of observations recorded in N locations (e.g. housing prices in 

our case) , W1 and W2 are (N x N) spatial weight matrices, ρ and λ  are the spatial 

parameters, Z is (N x k) matrix of independent variables and β  is (N x 1) coefficients to 

be estimated.  Spatial weight matrices represent degree of potential interaction between 

neighboring locations. Various types of specifications for the weight matrices are 

discussed in detail in the following section.   

    We are going to consider two types of tests, testing 0 : 0H λ =  in the presence of ρ  

and testing 0 : 0H ρ = in the presence of λ  for two cases where 1 2 1 2 and W W W W≠ = .  

The first case, a robust LM test for 0 : 0H λ =  can be expressed as 
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where u P Zβ= − %% are the OLS residuals, 2 ' /u u Nσ =% % % , [ ' ]ij i j i jT tr WW W W= + , 

1 2 2 1
1 1 11( ) [( ) ' ( ) ]NJ W Z M W Z Tρ β σ β β σ− −

⋅ = +% %% % %  and 1( ' ) 'M I Z Z Z Z−= − .  For the case of 

W1=W2, (2.9) can be rewritten as  
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As for the second type of the test, a robust LM test for 0 : 0H ρ =  is derived as 
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for the case of 1 2  W W≠ , and for the case of W1=W2, it is  
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⋅
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−
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%
.                               (2.12) 

    Assuming W1=W2 is more realistic in practice since we can often expect the structure 

of spatial dependence to be the same for both the dependent autoregressive variable and 

the error term (Anselin et.al.,1996).  These tests are tested against 2 (1)χ . 

 

2.3.2 Spatial Weight Matrices 

        Tobler’s (1979) “first law of geography” states that “everything is related to 

everything else, but close things more so”.  The question here is “how close is close?”, or 

“how far is far enough to have no relation?” We have to determine a relevant 

“neighborhood set” indicating which locations have interaction and which are not. This is 

done by defining spatial weights matrix.  

    A spatial weights matrix is a N by N positive and symmetric matrix. By convention, 

the diagonal elements of the weights matrix are set to zero. There are mainly two major 

ways to define the weight matrix. One is based on the judgment of whether house i and 

house j are neighbors or not. In this case, elements of the matrix is shown as 1ijw =  when 

i and j are neighbors and 0ijw = otherwise. The matrix is often row-standardized as
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/s
ij ij ijj

w w w= ∑ . Note that row-standardized matrix may not be symmetric.  In general, 

we choose how many nearest neighbors to be considered “neighbors” and see which 

weight matrices fit the model the most.  The other way to define the weight matrix is 

based on the actual distance between the houses. We usually set up the cut-off distance. 

For the houses within the cut-off point, inverse of the distance between two houses are 

computed and entered as the element of the weight. It is zero if a house lies beyond the 

cut-off distance from the base house. It can be defined as 

1/  for , 0 for .ij ij ij ij ijw d d w dδ δ= ≤ = ≥  where ijd is the distance between house i and j, 

and δ is a cutoff distance value.  

 

2.3.3 Spatial Models 

    When the spatial parameter on the autoregressive regressor, ρ is tested significant  

while the spatial parameter on error term, λ  is not, we choose spatial lag model for 

estimation.  Spatial lag model is expressed as follows: 

P WP Zρ β ε= + +                                    (2.13) 

where ε  is assumed to be a vector of independent and identically distributed (i.i.d) error 

terms.  When spatial lag model is selected, we know that a housing price is explained 

partially by the neighboring observations. In other words, this model is capturing 

spillover effects of neighborhood. The modeler is interested in measuring the strength of 

the relationship and the “true” effect of the explanatory variables after removing the 

spatial autocorrelation effects.  The weight matrix is constructed to reflect the structure of 
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potential spatial interactions among observations (Kim et. al. (2003)).  When the spatial 

autoregressive parameter, ρ is tested to be significant, ordinary least square (OLS) 

estimates are biased and inconsistent (Kelejian and Prucha (1998)).  The spatial lag term 

( )iWP  is always correlated with the error term since the term acts like endogenous 

variable. Furthermore, the spatial lag for the location i is correlated with the error term at 

i as well as the error terms at all other locations included.   

    Rewrite (2.13) as  

                                                 1 1( ) ( )P I W Z I Wρ β ρ ε− −= − + − .                     (2.14) 

Since 1( )I Wρ −−  yields an infinite series 2 2 3 3( )I W W Wρ ρ ρ+ + + +L , orthogonality 

condition for OLS cannot be met as 

                                            1[( ) ] [{ ( ) } ] 0i i i iE WP E W I Wε ρ ε ε−= − ≠                  (2.15) 

    Estimating OLS by ignoring the spatial lag term when the term is relevant to the model 

causes the same problem as omitted variable.  Suppose that a correct model is (2.13), but 

we estimate P Zβ ε= +  by using OLS. We can see the estimated result is biased as 

follows. 
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     Given the bias and inconsistency, we  have to use maximum likelihood estimation or 

instrumental variables estimation for this model (Anselin (1988), Kelijian and Prucha 

(1998), Kelijian and Prucha (1999)).   

     When ρ is tested insignificant and λ  is significantly different from zero, we employ 

spatial error model which is expressed as follows: 

                                                           
P Z u
u Mu

β
λ ε

= +
= +

                                        (2.16) 

where ε  is an N x 1 vector assumed to be distributed i.i.d. normal. The housing price is a 

function of the omitted variables at neighboring location as well as the independent 

variables.  This model is appropriate when there is no theoretical or apparent spatial 

interaction between any house and its neighboring observations and the modeler is 

interested only in correcting the potentially biasing influence of spatial autocorrelation by 

using data with spatial features. OLS estimates are unbiased, but inefficient (Kim et. 

al.,2003).  To see this,  plug the second equation of (2.16) into the first and gain 

                                                          1( )P Z I Mβ λ ε−= + −                        (2.17) 

The error covariance can be derived as 

                                           2 1( ') [( ) '( )]E I M I Mεε σ λ λ −= − −    .                 (2.18) 

 Therefore, it leads to nonzero error covariance between every pairs of observations 

(Anselin and Bera, 1996). 
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2.4  Second Stage Hedonic Method 

    The second stage of hedonic method is to determine demand function for each 

characteristic of the differentiated good. Deriving the demand function enables us to 

calculate welfare measures for the non-marginal change in characteristics. In order to 

estimate one demand function instead of one for each individual, we include individual 

socio-economic characteristics in this stage of estimation. 

 

2.4.1  Theory 

    As we stated in section 2.2.1, demand function bij in Figure 2.2 cannot be derived from 

the first stage since all we can obtain is the information of the point where the implicit 

price function and the demand function intersects.  In order to overcome this demand 

identification problem, estimating multiple hedonic price functions in the first stage by 

using data from separate markets has been employed the most in practice. By deriving 

multiple hedonic price function, we can identify two or more points on marginal bid 

function bij. See Figure 2.3 for the illustration.  The basic idea of this multi-market 

approach is “finding cases where individuals with the same preferences, income, and 

other traits face different marginal implicit prices” (Freeman (1993)). 
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Figure 2.3.  Identification of Marginal Bid Function 

 

    Figure 2.3 depicts the case of implicit price functions derived from hedonic price 

function derived from two separate markets. In addition to the point A and B determined 

for the first stage, now we can identify another points C and D on individual marginal bid 

functions.  By controlling individual socio-economic characteristics in this stage, we can 

derive a single demand function in the end of the second stage estimation. Differences in 

hedonic price function from distinct markets arise from differences in the components of 

consumers and firms and their interactions.  Varieties in supply could come from the 

differences in cost structures of firms while differences in demand could be from 

variations of the distribution of socio-economic characteristics among individuals within 
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a market.  A critical assumption for connecting multiple points onto one marginal bid 

function is that “individuals with given vector of socio-economic characteristics have 

preferences over attributes that are identical across markets” (Taylor, 2003).  Since 

supply structure is different in different markets, people with similar socio-economic 

profile are observed to make different house purchasing decision across different 

markets.  When these assumptions are met and socio-economic characteristics are 

controlled properly, we can obtain demand function. 

    

2.4.2  The Model 
 
    Prior to discuss the estimation procedure, we need to point out two sources of 

endogeneity problems.  The first endogeneity arises from the fact that individuals choose 

the marginal price of the characteristics by choosing the quantity of the characteristics 

they demand for the case of non-linear marginal implicit prices. Choosing a point, say A 

in Figure 2.3, the consumer is choosing both marginal willingness to pay and the quantity 

of the attribute.  This point is easily seen as the following log-linear hedonic price 

function and its marginal implicit price for characteristics i.  

                                   
Hedonic Price Function:  ln
Marginal Implicit Price:  /

iZ i

P Z
P z

β ε
β

= +
=

 

   The second source of the endogeneity comes from the inclusion of an adjusted income 

since we need to linearize the budget constraint for the cases involving non-linear 

implicit prices.  A budget constraint can be typically written as 

                                                  1( ,..., )nY X P z z= +                                          (2.19) 
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where Y is the household income, X is expenditure for numeraire goods and 1( ,..., )nP z z  

is the expenditure for the house with a set of attributes.  When the budget constraint is 

non-linear, in order to derive the demand function analytically, it is necessary to linearize 

the budget constraint around the optimum point. The adjustment is implemented by first 

adding 
1 i

n
Z ii

P z
=∑  to both sides of (2.19), then subtract ( )P Z  from both sides, which is 

                                
1 1

( )
i i

n na
Z i Z ii i

Y Y P z P Z X P z
= =

≡ + − = +∑ ∑  .                       (2.20) 

This adjusted income depends on non-constant marginal implicit price and again causes 

endogeneity.  

    Because of this endogeneity, two stage least squares estimation with instrumental 

variables is typically used in estimating the second-stage hedonic model.  Estimates will 

be inconsistent if we ignore this endogeneity and estimate with OLS since “price depends 

on quantity and price is correlated with the error term in the equation explaining quantity 

demanded” (Palmquist (1991)). Here, the choice of proper instrument variables is very 

critical.   These instruments should have the following properties, (1) correlated with the 

regressors, (2) uncorrelated with the error term, and (3) of full-rank (add new 

information) (Taylor (2003)).  

    Palmquist (1983) used age of the purchaser, dummy variable for the purchaser who is 

single, number of dependents in the family making the purchase and dummy variable for 

the purchaser who is black as instruments. Boyle et.al (1999) included purchaser’s 

income, whether or not a property owner visited the lake before purchasing the property, 

whether or not the purchaser expected an improvement, decline, or no change in the 
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water clarity at the time the property was purchased, and whether or not friends or 

relatives of the purchaser also owned property on the lake at the time the property was 

purchased based on a survey. Bartik (1987) included a dummy variable for treatment 

groups since they used experimental data, as well as dummy variables indicating cities 

and time period. These studies utilized individual socio-economic data collected by 

individual surveys. Beron et. al. on the other hand used census tract level data. They 

included average household income net of housing expenditures and percentage of the 

population with a college degree.  

     In the remaining of this section, we illustrate the estimation procedure for this second 

stage. In order to estimate multiple hedonic price functions, we have to determine 

separate markets over geographic space and/or time.   Suppose here that we identified 

two separate markets, A and B. We estimate two hedonic price functions for each market 

and obtain set of marginal implicit price functions for each market separately.  For the 

case of log-linear hedonic price function, this process can be expressed as follows. 

                          

Hedonic Price Function for Market A: ln
Hedonic Price Function for Market B: ln
Marginal Implicit Price for Market A: /

Marginal Implicit Price for Market B: /
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i
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          (2.21) 

    We then pool data from both markets and include household socio-economic 

characteristics and market dummy variable into the data set.  In the first step of the two 

stage least squares (2SLS) demand estimation, we estimate predicted value for the 

endogenous variable by using instrumental variables (IVs).  
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                                                          ( , , )m a
iz f D Y= C                                         (2.22) 

    where mD  is dummy variables for each market (one of them should be dropped), aY is 

the adjusted income (19), and C is a vector of socio-economic characteristics.  Kahn and 

Lang (1988) and Beron et.al.(2003)  included IVs as dummy variables for each market 

and its interaction terms with socio-economic variables while Palmquist (1984) 

“regressed the endogenous variables on all linear and quadratic terms in the exogenous 

socio-economic variables and a set of dummy variables for the urban areas”. 

    In the second step of 2SLS, we actually estimate the demand function by using the 

predicted value estimated in the first step. 

                                ( ( ), ( ), ( ), ( ( )), )
i i

a
i Z i s s c c Z iz f P z P z P z Y P z= C) )                                 (2.23) 

where ( )
iZ iP z)  is the marginal implicit price evaluated at the predicted value iz) , ( )s sP z  

and ( )c cP z  are the marginal price for substitutes and complements of attribute iz , 

respectively, ( ( ))
i

a
Z iY P z)  is the adjusted income evaluated at the predicted value and C is 

the socio-economic characteristics. Once (2.23) is estimated, we evaluate all the variables 

except for iz  and 
iZP at their mean values in order to derive the inverse demand function.  

Past studies listed in this section typically estimated (2.23) with linear, semi-log and 

Cobb-Douglas specifications.   

    The welfare change due to a change in the quantity of a variable can be measured by 

integrating under the estimated inverse demand function over the quantity change if the 

relocation is costly and the household decides to stay in the same house. It is given as 
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Since the estimated demand function is Marshallian demand, estimated welfare change is 

consumer surplus. 

 

     
2.5 Conclusion 
 

    Hedonic method is composed of two parts. The first part is to estimate hedonic price 

function and compute implicit prices for variables determining housing prices.  There 

have been many hedonic studies over past years. However, number of studies including 

water quality variables are much less comparing to the studies with air quality. Spatial lag 

or error model have been introduced in recent years and have been applied to hedonic 

price models. Together with the development of spatial econometrics model, the 

statistical tests such as robust LM test are developed as well to determine the appropriate 

spatial model.   

    The second part of the hedonic study is to estimate demand function and compute 

welfare change in non-marginal environmental quality change. This is typically done by 

using multiple hedonic price functions derived from separate markets and estimating by 

2SLS with instrumental variables.   
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CHAPTER 3 
 

DATA DESCRIPTION 
 
 
 

 
3.1  General Data Description 
 
     In this chapter, we are going to discuss our data and variables included into hedonic 

price models. The preparation of general data other than water quality data are described 

in this section followed by the description of water quality data preparation in section 3.2.  

3.1.1   Housing Data 
 
    We obtained Deed Transaction Data from 1985 to 1998 from Center for Urban and 

Regional Analysis (CURA). This data contains sales price of houses, sales date, address 

of the houses and other house characteristics, such as number of rooms, number of 

bedrooms, number of bath rooms, lot square footage and heat types as well as school 

district the houses belong. Single family occupations with less than twenty acres are 

included in our analysis.  Deed transaction data is geocoded based on addresses by using 

roads centers file in order to determine the location of each house sold.   
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    In our analysis, all prices (housing price and median household income) are discounted 

and expressed in 1996 dollar. Lot acreage, building square feet, number of bathrooms and 

garage square feet are included in the models as they are. Age of the house is derived by 

subtracting built year from year of the sale. Air-conditioning, deck and fireplace dummies 

are also included.    

 
3.1.2   Neighborhood Data 

     School district ranking is obtained from Ohio Department of Education. Given the 

ranking within the state, we recalculated the ranking only for four counties (Erie, Lorain, 

Ottawa and Sandusky) included in the analysis. The map of school district and their 

ranking is shown in Figure 3.1.  Median household income data is taken from census 

block group level data of year 2000.   

 

3.1.3   Proximity Data 

     Proximities to the closest city and beach are calculated by using road-network, Arc 

Macro Language and ArcInfo. We compute two distances, from a house to the closet road 

network node and from the node to the destination, then add these two distances to gain 

total proximity to places. Distances to all the destinations are calculated and the smallest 

distance among them is adopted as the closest distance value. 
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Figure 3.1 School District Boundaries and Ranking in Four Counties 

 

3.2  Water Quality Data 

    Water quality measures in the hedonic study should be carefully chosen. The measures 

should reflect home purchasers water quality perceptions since individuals rely on what 

they can visually observe.  In other words, measures typically used by scientists may not 

be a good representation of water quality to household purchasers.  Fecal coliform count, 

E.coli bacteria content as well as secchi depth disk readings are used in our study as 

water quality measures. 
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3.2.1    Fecal Coliform Counts 

     Fecal coliform counts data has been obtained from Ohio Department of Health and 

Erie County Health Department.  Fecal coliform and E.coli content are used as the 

indicator of beach closing. The associated standards can be found in Chapter 3745 of the 

Ohio Administrative Code (OAC) stating that the geometric mean E.coli content, based 

on not less than five samples within a thirty-day period shall not exceed 200 per 100 ml 

(for fecal coliform) or  126 per 100ml (for E.coli).  Once the standard is exceeded, beach 

closing is posted. Measures of bacterial counts have been changed entirely from Fecal 

Coliform to E.coli in 1996 on all beaches since testing for E.coli bacteria may be the best 

method of analyzing such waters from organisms known to be harmful to humans.    

     Counties in Ohio switched measuring the bacterial counts from fecal coliform to 

E.coli in 1997.  Since there is no direct conversion method available between those two 

measures, we have to handle data before and after year 1997 separately. The levels of 

these counts affect swimming and fishing activities directly and it is also hazardous to 

human health. Since we have housing data only up to 1998, we decide to include fecal 

coliform instead of E.coli and employ data from 1991 to 1996 in our analysis. 

     We first determine the closest beach to each house, and then assign Fecal coliform 

values of the beach which has the shortest distance from the house according to the year 

of the house purchase.  Fecal coliform counts data have generally collected between May 

to September each year on the beaches along the Lake. After some trials with different 

ways of aggregation, annual average over one year before the purchase of each house has 

been adopted. 
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3.2.2    Secchi Disk Depth Readings 

    Secchi Depth Disk Readings Data is obtained from Stone Laboratory of Ohio State 

University and Sandusky Fisheries Research Station, Division of Wildlife, Ohio 

Department of Natural Resources. Secchi disk depth readings which indicates water 

clarity is also employed because it is a physical manifestation of the lake eutrophication 

and it is easily observed by individuals.  

     Secchi depth reading is an indicator of water clarity.  The readings are taken between 

May and October in typical years. They are not taken from the same spots every month or 

year. Since the data varies over both space and time, using the raw data causes massive 

amount of missing observations.  Therefore it is difficult to aggregate data over a year 

time period in order to assign data for each house depending on the sales date.  In order to 

aggregate data meaningfully, we should take into account the structure of spatial 

autocorrelation of data.  An example of secchi disk depth readings data are shown in 

Figure 3.2. 
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Figure 3.2  Locations of the Secchi Disk Depth Reading points in August 1990. 

 

    Empirical studies using water quality values as one of variables in the hedonic price 

function estimated did not either encounter or handle this problem.  In general, multiple 

small-sized lakes are used to gain the variations in water quality. Therefore, researchers 

could use a single reading or index from a lake and assign the value to the surrounding 

houses of the lake.  The examples of studies used multiple lakes are David (1968), 

Steinnes (1992),  Michael, Boyle and Bouchard (1996),  Feather (1992) and Boyle et.al. 

(1999).  



 

41 
 

    Leggett and Bockstael (2001) used Inverse Distance Weight (IDW) interpolation 

method by using fecal coliform readings taken from monitoring stations along 

Chesapeake Bay. IDW is computed based on the assumption that things which are close 

to each other are more similar than those that are far away. The general formulation of 

IDW is 

1

1

1( )
( , ) ,    

1( )

p
N

i
i i i N

pi

k k

dw x y w

d

λ λ
=

=

= =∑
∑

 

 

where w(x,y) is the predicted value at location (x,y), N is the number of nearest negihbor 

points around (x,y), iλ are the weights for each known point value iw at location (xi,yi), di 

is Euclidean distances between (xi,yi) and (x,y), and p is the exponent which affects the 

weighting of wi on w. We often see the case where p=2.  Although they handle some 

spatial aspects of the environmental data, those data are taken from fixed monitoring 

station.  

    Some of recent hedonic studies with air quality as the environmental variables use 

kriging methods to handle the spatial variations of the variables. Anselin (2004) reported 

that estimated results differ depending on how researchers handle environmental quality 

data. He compared three different measures and interpolation methods (Thiessen Polygon 

which assign the value of closest monitoring station, Inverse Distance Weight and 

Kriging) and concluded that kriging is the best measure for the estimation.   
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     Beron et.al. (2003) used kriging to deal with air quality data in four counties in 

Southern California.  Yet, there is no hedonic study involving water quality used the 

kriging method as the measures for managing spatial environmental quality data. 

    Kriging is synonym to optimal prediction and is one of the important interpolation 

methods which provide a best linear unbiased predictor of any unobserved values. 

Kriging uses variograms as a weighting mechanism which assigns more influence to the 

nearer data points. Variogram is a measure of spatial variability and variogram distance 

measures the average degree of dissimilarity between a point to be estimated and a 

nearby known data value.  Kriging makes inferences on unobserved values, takes into 

account the covariance structure as a function of distance and obtains best linear unbiased 

predictor.  

   We chose kriging to cope with spatio-temporal secchi disk depth readings data.  All 

data collected for a year are plotted and then kriging was implemented over all of the data 

points. ArcMap was used for the implementation of kriging. An example of kriging is 

shown in Figure 3.3.  Predicted values calculated with kriging are assigned to each beach 

location. 
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Figure 3.3  An Example of Kriging, 1996. 

 
 
 
 
 
 

3.3  Descriptive Statistics of Data 
 
     Summary statistics of all the data used in clustering and first stage of estimation is 

listed in the table below.  The first three variables are used in clustering and others are 

used in the first stage hedonic price model.  Average housing price is 111,503 dollars in 

1996 dollar. On average, the houses locate 5.8 km from the closest city, 9 km from the 
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Lake coast line and 12.6 km from the closest beach.  Average age of houses is 30 years. 

The average fecal coliform counts house are facing is 255 counts per 100 ml while it is 

2.2 meters for secchi disk depth readings.  

 

      ALL 
Variable Description Unit Mean St.Dev. Min. Max. 

MedHHInc Median Household Income,                    
Census Block Group Data (2000) 1996$ 36647 9480 4999 60499 

CITY Distance to the closest city km 5.80 4.90 0.00 29.32 
COAST Distance to the closest coast line km 9.05 7.27 0.00 40.75 
DPRICE Discounted housing price 1996$ 111503 59186 50000 669292 
LOTACR Lot Acreage acre 586.72 1806.78 10.00 78000.00 
BLDGSF Building Square Foot sq.ft. 1649.75 607.49 196.00 5824.00 
BATHN Number of Bathrooms   1.42 0.56 1.00 5.00 
GRGSQF Garage Square Foot sq.ft. 133.30 234.85 0.00 4040.00 

AGE 
Age of a House                                        
(Built year - year of purchase) year 30.38 24.92 0.00 171.00 

AIRCNDD 
= 1 if there is an air-conditioning 
system   0.75 0.43 0.00 1.00 

DECKD = 1 if there is a deck   0.10 0.30 0.00 1.00 
FIREPLD = 1 if there is a fireplace   0.47 0.50 0.00 1.00 

SDRANK  
School district ranking within 4 
counties   19.53 11.99 1.00 38.00 

BEACH Distance to the closest beach km 12.56 8.68 0.01 48.13 

FECAL Fecal coliform counts 
counts   
/100ml 255.99 281.44 12.00 2717.26 

SECCHI Secchi depth disk readings meter 221.27 72.54 89.54 431.78 
N     10655 

 
 
 

Table 3.1. Descriptive Statistics of Data 
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3.4  Conclusion 
 
     Many variables which are going to be used in our hedonic price estimation are 

prepared by using ArcGIS program based on raw data. The examples are the proximity 

variables derived by using Arc, Kriging used for secchi readings data, geocoding for 

housing addresses, and identification of census data and school district ranking for each 

data.  Most of other variables are directly included into hedonic price estimation. 
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CHAPTER 4 
 

CLUSTER ANALYSIS FOR SUBMARKET DETERMINATION 
 
 
 

 
4.1   Submarket Definition 
 
          A typical definition of a submarket is “a set of dwellings that are reasonably close 

substitutes for one another, but relatively poor substitutes for dwellings in other 

submarkets (Grigsby et al., 1987).”  More generally, “markets are truly separate if 

participants in one market do not consider houses in the other market when making 

purchase decisions (Taylor, 2003).”  It is important to note that there is no contiguity 

requirement in the definition. As long as the houses in a submarket can be considered as 

close substitutes, it is possible to include non-contiguous houses or area into the same 

submarket.   

     Submarkets are typically defined in terms of geographical areas, physical 

characteristics of the dwellings, socio-economic characteristics of neighborhood, and in 

some cases defined by local real estate agents.   
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     Examples of the geographical definition include the pre-existing geographical or 

political boundaries such as census block, postal code, school district or local political 

jurisdictions. Physical characteristics include housing structures and sizes (e.g., lot and 

floor area, number of rooms) and dwelling type (e.g., detached versus attached). 

     In more recent years, Cluster Analysis combined with Factor Analysis or Principle 

Component Analysis (PCA) has been used to determine submarkets.  While the approach 

mentioned above rely on the existing “boundaries” that are defined by a researcher, the 

approach with PCA and/or Cluster Analysis does not depend on a priori definition of 

geographical boundaries, but relies on the underlying structure of raw data and their 

combination. Detailed description of Cluster Analysis and the related literature using 

these techniques are discussed in the following sections. 

 
4.2   Overview of Cluster Analysis 
 
     The objective of cluster analysis is to uncover groups of homogenous observations. 

Clustering or classification originate largely in the natural sciences such as biology and 

zoology in the form of taxonomy, and numerous techniques have been developed in the 

discipline. Over time, the techniques have been adopted and used widely in areas such as 

engineering, marketing, archaeology, psychiatry, anthropology (Everitt et.al. (2001)).  

     When a researcher implements a cluster analysis technique, he/she has to make 

decisions over three major factors, namely, the clustering algorithm, the clustering 

criterion and the dissimilarity measure.  We introduce two clustering algorithms, four 

clustering criteria and five dissimilarity measures including four measures that we 
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introduce as alternatives to the widely used measure, the Euclidean distance. Cluster 

analysis is used in our study in order to reveal the underlying housing submarkets 

inherent in our housing sales data covering four adjacent counties in coastal Ohio. 

 
4.2.1  Clustering Algorithms 
 
     Large number of algorithms for grouping observations into clusters based on their 

similarities exist in the literature. In the area of market segmentation, mainly two 

clustering algorithms are used, namely hierarchical clustering and k-means clustering. In 

this section, we review these two techniques. 

 
4.2.1.1  K-means Clustering 
 
      K-means clustering is implemented by assigning k cluster seeds and proceeding to 

group all observations with respect to their similarities to one of the cluster seeds. The 

number of clusters generated is the same as the number of cluster seeds initially given. 

Therefore, k-means clustering requires a priori knowledge of the number of clusters to be 

formed.  For example, Bourassa et.al.(2003)  used k-means clustering by presetting the 

number of clusters to the sales groups which are identified by the appraisers.  

      Once the cluster seeds are chosen, all objects are assigned to one of the clusters 

according to their distances to the cluster seeds.  As clustering proceeds, the definition of 

each cluster is updated using the mean value of the observations assigned to that cluster, 

and the objects are regrouped according to their distances to the new cluster means.  
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     These grouping and mean updating steps are iterated until the changes in cluster 

assignments are significantly small. The k-means algorithm minimizes the sum-of-

squared-errors between the observations and the clusters (represented using their means).  

 

4.2.1.2  Hierarchical Clustering 
 
       The k-means algorithm produces a flat data description where the clusters are 

disjoint and are at the same level.  In some applications, groups of patterns share some 

characteristics when looked at a particular level.  Hierarchical clustering tries to capture 

these multi-level groupings using hierarchical representations rather than flat partitions. 

     Hierarchical clustering does not require a priori knowledge of the number of clusters. 

If we start from individual observations (agglomerative method), at each successive 

iteration, two groups with the shortest distance are merged together. In the end, the 

algorithm produces a single group with all observations. Based on the similarity values 

obtained during merging, we can draw a hierarchical tree (called dendrogram) to observe 

which objects/clusters are grouped together at which iteration. It is called divisive 

hierarchical clustering instead of agglomerative clustering if one starts from one big 

group containing all observations, then in each following step one of the groups is 

divided into two according to a predetermined distance measure. In the end, the algorithm 

yields n groups each containing a single observation. Agglomerative procedures are 

probably the most widely used among the hierarchical methods (Everitt et.al. (2001)). 

Therefore, our discussion here on will focus on agglomerative hierarchical clustering. 
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     Hierarchical clustering process is usually visualized by tree diagram, called a 

dendrogram. There are mainly two decisions each researcher has to make. The first is to 

decide what the “optimal” number of clusters is, in other words, in which stage in a 

dendrogram we can determine the most meaningful clusters.  The second decision is 

about the “distance measure” that is used to find which pair of groups should be merged. 

 
4.2.2  Clustering Criteria 
 
     In this section, we review four clustering criteria used with the agglomerative 

clustering algorithms.  A clustering criterion determines how similar or dissimilar two 

groups of objects are. The methods we review in this section are the most widely used 

methods in the literature. 

 
4.2.2.1  Single Linkage 
 

     Single linkage, also known as the nearest-neighbor criterion, chooses the pair of 

groups to be merged according to the distance between the closest pair of individual 

objects from each group. Here, closest distance means the most similar. This process can 

be illustrated using Figure 4.1 more clearly.  First, the distance between all pairs of 

observations, initially belonging to individual clusters, is computed. Second, the pair with 

the smallest distance, which is 1 and 2 in this illustration, is found and these two 

observations are merged.  At this point, we have four clusters, {1 2}, {3}, {4} and {5}. 

Third, the pair of clusters having the smallest distance, which corresponds to objects 4 

and 5, is found again and these clusters are merged. Now we have three clusters, {1 2}, 
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{3}, {4,5}. Next, cluster pairs are considered again. The clusters with the shortest 

distance are found as {3} and {1,2} because the distance between the objects 1 and 3 is 

the smallest possible distance according to the single linkage criterion. The object 3 is 

merged with 1 and 2 and two clusters are obtained, {1,2,3} and {4,5}. Finally, these two 

clusters are merged using the distance between the objects 3 and 4 as the smallest 

distance according to the single linkage algorithm. 

 

  

 
Figure 4.1  Example objects for illustration of Clustering Methods 
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4.2.2.2  Complete Linkage 
 
     Complete linkage, also known as the furthest neighbor criterion, is the opposite of 

single linkage in the sense that the distance between groups is defined by the most distant 

pair of objects. The most similar pair of clusters is merged as in the single linkage case, 

but the similarity is measured by minimizing the distance between the furthest objects in 

two clusters. We illustrate this process using Figure 4.1. First, 1 and 2 are merged, and 

second, 4 and 5 are merged as before. But now the distance between each pair of groups 

among {1 2}, {3}, {4 5} is measured using the furthest pair of objects. In other words, 

the distance between {1 2} and {3} is measured as the distance between 2 and 3, and the 

distance between {4 5} and {3} is measured as the distance between 5 and 3. Since the 

distance between 2 and 3 is shorter than the one for 5 and 3, {1 2} and 3 are merged 

together, forming the cluster {1 2 3}. Now the distance between {1 2 3} and {4 5} is 

measured as the distance between 2 and 4. Although the cluster formed in each step is the 

same in this setting both for single linkage and complete linkage, it is coincidental for our 

simple setting.  Merging order can, and often do, differ between these two methods. 

 
4.2.2.3  Group Average 
 
     Group average, also known as the unweighted pair-group method using arithmetic 

averages (UPGMA) treat the distance between two clusters as the average of the distance 

between each possible pairs of objects, one object from each cluster. For example, after 

grouping 1 and 2 in Figure 4.1, the distance between {1 2} and 3 is computed as  
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1
2  

where   is the distance between {1 2} and 3 and and  are the distances 

between 1 – 3 and 2 – 3, respectively.  Therefore, as a new object is merged into a 

cluster, the distances from that cluster to other clusters are updated. 

 
4.2.2.4  Ward’s Method 
 
     Ward’s method, or Ward’s minimum variance clustering method, is one of the most 

used clustering criteria after the group average criterion. Ward (1963) introduced a 

method, at each step of merging clusters, where two clusters whichever yield the smallest 

variance are merged together.  In every step, variances for all possible combinations of 

clusters are computed and the combination corresponding to the smallest variance is 

chosen to be merged. In summary, the process follows three steps. First, the mean 

distance within each cluster is computed. Second, we compute the differences between 

each member in a cluster and its mean, square the difference and add them up within a 

cluster. Third, variances for all possible combinations of the tentative clusters are 

computed, and the ones returning the lowest variance are merged Romesburg (1984). The 

total within cluster sum of squares error, E is computed as  
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, ,  

,
1

,  

 
where g=1…G is the cluster index, i = 1, … I represents the object index within a cluster, 
k = 1…K is the k’th feature of an object, ng is the number of objects within a cluster, xgi,k 
is the variable for the k’th feature of the i’th member within the g’th cluster. 
 
 
     Ward’s method is commonly used in the existing studies which attempt to segment 

housing markets using cluster analysis (Bourassa et.al. (1999), Bates (2006)). 

 
4.2.3   Distance Measures 
 
     How the similarity or dissimilarity between two objects with multiple attributes is 

defined is one of the most important issues to be considered in cluster analysis for 

grouping observations together.  Euclidean distance is the most commonly used distance 

measure for continuous variables. For binary and categorical variables, there are other 

ways to define the distance since Euclidean distance does not represent the similarity well 

for these discrete variables in general. Furthermore, if the attributes of observations 

contain mixture of continuous and discrete variables, a hybrid distance measure for both 

types of variables has to be determined. In the following subsections, we review 

representative ways of defining distance for each type of variables. 
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4.2.3.1   Binary Variables 
 
     The distance for binary variables (or dummy variable as often used in econometrics 

models) in general is expressed as a “match” or a “mismatch”. The general setting is 

shown in Table 4.1.  In the table, a, b, c and d are considered as “matching scores” and 

are assigned according to the characteristics of the variable.  For some cases, 1 – 1 match 

has the same meaning with 0 – 0 match, but for others may not be the same. An example 

of the former case could be gender in general sense. Both 1 – 1 and 0 – 0 match simply 

mean both entries have same gender.  In this case, match score for a and d can be equal 

to one and zero for b and c.  For the latter case, 0 – 0 match simply means the absence of 

certain characteristics and in some cases it does not contain useful information for 

determining the similarity between two objects. For example, the co-absence of wings in 

the context of taxonomy does not give enough information to define similarity between 

the two. In this case, score for a should differ from the one for d.  Therefore, match 

scores have to be defined carefully depending on the type and the meaning of the binary 

variable. 

 

     Individual i 
  Outcome 1 0 Total 

Individual j 1 a b a + b 
0 c d c + d 

  Total a + c b + d p = a + b + c + d 
            Source: Everitt et.al. (2001) p.38 

 

Table 4.1. Distance Definition for Binary Variables 
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4.2.3.2   Categorical Variables 
 
     Categorical variables contain more than two classes and the match score is typically 

assigned as one if a certain attribute fall into the same class for two objects and zero 

otherwise. Eye color can be an example of this case: match if two people have the same 

colored eyes, mismatch if they do not. If the classes for a categorical variable can be 

ordered numerically, it is possible to define different scores for mismatch cases by 

placing scores less than one and greater than zero for the cases which fall into adjacent 

classes.  An example can be the income variable. We can assign one for the cases with 

same class of income, and a value between 0 and 1 to the cases which are not in the same 

class, but in adjacent classes.  The magnitude of the “close match” cases has to be 

determined by reflecting the characteristics of the variable.  

 
 
 
4.2.3.3   Continuous Variables 
 
     The most commonly used distance measure for continuous variables is the Euclidean 

distance which is defined as 

 /  

 where is the distance between object i and object j,  is the value of the kth attribute 

for object i and  is the value of the kth attribute for object j.  As Everitt et.al.(2001) 

reviews, there are other measures such as City block distance ( ∑ | | , 

more general Minkowski distance ( ∑ | |       1 ) ) and more. 
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4.2.3.4   Mixed Variables   
 
     In some cases, attributes which are used to determine the similarity contain both 

categorical and continuous variables.  One possible way to handle mixed variables is to 

dichotomize all variables and use the similarity measure described for binary variables 

(Everitt et.al. (2001), Romesburg (1984)). The other way is to use Gower’s general 

similarity measure although it is used very rarely in practice. This measure is given by 

 

where  is the similarity between the ith and jth objects and  is set either as one or 

zero depending on whether the comparison is considered valid. For example, it is set to 

zero when the kth variable is binary and co-mismatch case can be excluded. For binary 

and categorical data, the similarity is set as one if two objects have the same value and 

zero otherwise. For continuous, Gower suggests to use the distance measure of 

1 /  

where  is the range of the kth variable (Gower (1971), Everitt et.al. (2001)). 
 
 
 
4.3   Literature Review on Cluster Analysis and Hedonic Price Models  
 
     Large amounts of research have been devoted to define meaningful submarkets over 

several decades. There are many different approaches introduced for the same purpose, 

from the approaches which use pre-determined boundaries such as political boundaries 

(census tract/block group), postal codes and school district to the use of Classification 

and Regression Trees (CART) (Clapp and Wang (2006)), hierarchical model (Goodman 
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& Thibodeau (1998)), latent variable analysis (Arguea and Hsiao (2000)), Principle 

Component Analysis (PCA) (Watkins (1999)), and Cluster Analysis (CA) (Goetzmann 

and Wachter (1995), Bourassa et.al. (1999), Bourassa et.al. (2003), Day (2003), Bates 

(2006)). 

     Before going into the reviews of individual studies, we would like to review Principle 

Component Analysis (PCA) briefly.  PCA is used to reduce multidimensional data to a 

lower dimensional subspace and uncover the latent structure by constructing linear 

combination of variables from subset of original variables.  It is often used to reduce the 

multicollinearity among multiple variables by creating factors by combining highly 

correlated variables.  

     In Bourassa et. al. (1999) study, both PCA and Cluster Analysis are used in order to 

determine submarkets in Sydney and Melbourne, Australia. They use two different data 

sets, one contains local government areas (LGA) and the other contains individual 

dwellings. Each data contain 43 LGAs in Sydney, 56 LGAs in Melbourne, 2307 

individual dwellings for Sydney and 2354 houses for Melbourne. PCA is implemented by 

using twelve variables (distance to central business district (CBD), average number of 

bedrooms, percentage driving car to work, average number of cars, owner-occupation 

rate, distance to coast, population density, dwellings per km2, median household income, 

percentage in public housing, percentage unemployed, distance to subcenter) for LGA 

data and eighteen variables are included for individual dwellings data (distance to CBD, 

percentage driving car to work, average number of bedrooms, percentage owner 

occupied, average number of cards, distance to coast, population density, dwellings per 
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km2, median household income, percentage unemployed age of house, age of house 

squared, percentage in public housing, distance to subcenter, number of bedrooms, 

percentage detached, house value and number of problems).  They identified three factors 

(linear combination of a subset of variables) for LGA data and six factors for individual 

dwellings data. 

     By including these factors, Cluster Analysis has been conducted. Both k-means and 

agglomerative hierarchical clustering are implemented. For hierarchical clustering, 

Ward’s method is adopted as their clustering method.  However, they do not mention the 

similarity measure used.  As for k-means clustering, squared Euclidean distance is used. 

Number of clusters is set as five, same as a priori number of submarkets for both LGA 

and individual dwellings case. They also compared the output with the eight clusters case 

in order to observe which clusters are going to be divided into larger number of clusters.  

     In order to compare the outcome of clustering both from k-means and hierarchical 

clustering, they used weighted mean squared error (WMSE) (see section 4.6) computed 

from estimated hedonic equations for each cluster. They found that in most cases, k-

means and hierarchical clustering have similar WMSE, but for one case (Melbourne 

individual dwelling data), k-means results are significantly better than the results from 

hierarchical clustering.  In this study, they do not report the specification of the first stage 

hedonic equation or implement the second stage hedonic analysis. 

     Bates (2006) also uses PCA and Cluster Analysis to determine submarkets and 

compare clusters with existing planners’ administrative boundaries in Philadelphia. 

Census block groups are used as the smallest data unit by commenting that “while it 
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would be preferable to have an even smaller unit of measurement, the block group is a 

relatively homogenous area that can capture the locational qualities of housing important 

to households.”  She uses thirty-one variables for PCA ( % advanced math, % proficient 

math, % below-basic math, % advanced reading, % proficient reading, % below-basic 

reading, % detached houses, mortgage approval rates, medina income, % vacant land, % 

vacant residential, % to be demolished, % cleaned/sealed, % dangerous, % code 

violations, % LIHTC units, % public-housing units, % Section 8 units, % multifamily 

housing, % with bachelor’s degree, % renters, % professional occupation, poverty rate, 

male unemployment rate, female unemployment rate, % female-headed households, % 

families on welfare, burglary rate, quality-of-life crime rate, drub-crime rate, car-theft 

rate). Seven factors are identified and used in clustering analysis. Hierarchical clustering 

with Ward’s method is used as the clustering method. The similarity measure used is not 

mentioned in the paper.  Although she identified six clusters, how the number of clusters 

have been determined is not clear. 

     With the identified clusters and 2000 house sales data, she estimated hedonic equation 

by regressing unit sale price on housing characteristics including building material, 

property type, size, area, stories, and garage, with and without submarket dummy 

variables. However, she does not proceed to second stage hedonic analysis given 

identified cluster information.  She concludes that created submarkets better explain the 

variation in the housing market than preexisting planning-analysis sections (PAS).  
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     The boundaries for identified submarkets and PAS differ greatly and each submarket 

includes area scattered in the whole study area. She concludes that “the PAS do not 

sufficiently define areas of housing that are relevant to household choices.”  

     Day (2003) uses 3544 housing sales data of 1986 in Glasgow for his hedonic price 

analysis. The sales data come from 1027 different output areas (OAs) and further 

aggregated 38 postcode districts (PDs). He does factor analysis on a large number of 

neighborhood variables (25 attributes for OAs and 45 for PDs) and identifies six and four 

factors for OA and PD scale, respectively. He implements Cluster Analysis by including 

identified factors together with housing sales price, latitude and longitude of the house, 

proximity to the city center and structural characteristics such as dimensions, property 

type and property age. He uses the “hybrid” clustering method which combines 

partitioning and hierarchical clustering. First, partitioning method is used to generate 100 

groups, and second, hierarchical method is used for further clustering. The reason for 

adopting this hybrid clustering is not described explicitly. However, the sentence “The 

drawback with these methods, however, is that they are computationally burdensome 

with large data sets” stated right above the introduction of hybrid method implies that the 

method is introduced in order to reduce the computational burden. Eight clusters have 

been identified by observing the shape of the dendrogram generated, and they are reduced 

to four clusters by merging two clusters which Chow test result indicates.  He does not 

mention about either the similarity measure he used or the clustering linkage technique he 

adopted.  
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     Spatial hedonic price function with spatial error specification has been estimated for 

each cluster by including 48 variables including 21 structural attributes, 10 factors 

generated for OA and PD, five accessibility attributes, and 12 environmental attributes 

including traffic noise and various views from the house (open land view, park view, 

industrial view, water view and so forth). 

 

4.4   Discussion on Literature 

     In the studies reviewed in the previous section, in most of the cases the similarity 

measure used in the study is not even mentioned. Since it is not specifically discussed, we 

assume that they used Euclidean or standardized Euclidean distance which is often the 

default setting in clustering packages. Since Bourassa et. al. (1999) and Bates (2006) use 

factors generated from PCA directly into cluster analysis, their clustering variables are 

continuous.  Day (2003) uses variables with different units for clustering including 

categorical variable for property type. Although he does not mention how he defines 

similarity measures, if he used Euclidean distance, he is adding up the differences of 

variables with different units.  The use of standardized Euclidean distance solves this 

issue. However, since each variable is transformed into values with different ranges, the 

differences in value ranges can act as a weighting scheme for each variable without 

actually intending to do so when different variables are summed up to construct the 

similarity measure over multiple attributes. In addition, we are not sure how the 

categorical variable was treated in his study.   
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     Similarity measure is an important “building block” for clustering. Clustering methods 

and techniques are all built on the similarity measure we choose. Therefore, depending on 

the types (continuous, binary, or categorical) of variables and characteristics (if 

categorical, ordered or not, if continuous, units) of variables, similarity measure should 

be chosen carefully. 

 
4.5   Similarity Measures 
 
     In this section, we introduce similarity measures we suggest to use in our hedonic 

study.  As we will discuss in the proceeding chapter, the variables we use for clustering 

include both continuous and categorical variables. Continuous variables are median 

household income, the proximity to the closest city and the proximity to coast line. 

Categorical variable is municipality variable including cities, villages and townships.  In 

the effort of defining similarity between objects over multiple attributes with different 

units and variable types, we introduce four different measures we are going to use in our 

clustering analysis. 

 
 
4.5.1   Euclidean Distance Revisited 
 
     Before we go into introducing our measures, we revisit Euclidean distance and show 

why this measure is not suitable for our case.  If Euclidean distance is not standardized 

and the units of attributes are different, adding up the difference of one attribute to the 

other does not reflect the actual similarity between the object since the attributes with 

wider ranges will affect more to determine the similarity. In other words, the Euclidean 
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distance will implicitly assign more weighting to attributes with large ranges than those 

with small ranges. Moreover, in this way, we are adding up “apples” and “oranges” or 

physical distance (e.g. kilo meter) and income (e.g. dollar), for example.  

     Therefore, unitless standardized Euclidean distance is often used in order to avoid this 

problem. Standardization is done most commonly as follows. 

 

where  is the value of the kth attribute for the ith observation,  is the mean value of 

the kth attribute over I ( i = 0 …I) observations,  is the standard deviation of the values 

of the kth attribute. This standardization makes the variable’s distribution to have mean 

zero and variance of one. Note however that the range of the variable is not standardized 

into the [0,1] range.   

      It is not appropriate to use Euclidean distance in our case one is because of unit 

differences and the other is due to our mixed nature of the attributes (categorical and 

continuous). Moreover, even for the standardized Euclidean distance, the range is not 

[0,1] so that different variables can give different weights when we add up the similarity 

measure over different attributes. Therefore, it is ideal to have a continuous attribute 

falling into the [0,1] range especially when it has to be evaluated and added up together 

with binary or categorical variables.  
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     Furthermore, standardization of Euclidean distance implicitly assumes normal 

distribution. However, the distributions of our clustering variables have log-normal like 

distribution, not normal. Therefore, the use of standardized Euclidean may not be 

appropriate.   In the following subsections, we introduce the measure which could 

overcome these weaknesses. 

 

4.5.2   CDF Transformation 
 
     We first introduce a transformation as an alternative to the standardization reviewed in 

the previous section for continuous variables. This transformation, that is based on the 

cumulative distribution function (CDF), has an advantage over the regular 

standardization because the transformed value ranges between zero and one.  

     Technically, it is described as follows. Given a random variable x with cumulative 

distribution function Fx(x), the random variable  resulting from the transformation   = 

Fx(x) will be uniformly distributed in the [0,1] range (Papoulis (1991)).  CDF 

transformation was used in the area of Pattern Recognition “to approximately equalize 

ranges of the attributes and make them have approximately the same effect in the 

computation of similarity between objects” (Aksoy (2001)). The concept of this 

transformation can be visualized as Figure 4.2. The motivation behind making the 

transformed variable have a uniform distribution in the [0,1] range is to make the values 

spread as much as possible in that range so that the discrimination ability of that attribute 

is increased.  
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     The choice for the uniform distribution as a target for the transformed range comes 

from the fact that the uniform distribution on an interval is the maximum entropy 

distribution among all continuous distributions which are supported in that interval. 

Entropy is the amount of information contained in a random variable. An ideal attribute 

for identifying the similarity between objects is the one that has different values for 

different objects and similar values for similar objects. If there is no prior information 

about the distribution of the similarity, it is important to select attributes with lots of 

variation among items in order to distinguish different items better. For example, in order 

to define dissimilarity among multiple people, the attribute “the number of eyes” gives 

very little information about distinguishing one from the other. This kind of variable with 

very similar values for most of the items has very low entropy.   On the other hand, the 

attributes such as height, weight, and age have higher entropy. Having maximum entropy 

is important because it ensures to describe the differences between objects as much as 

possible. If the range of the value [a b] is the only information given, the uniform 

distribution is the one that has the maximum entropy.    Furthermore, this transformation 

does not assume any distributional forms. Therefore, we do not have any problem with 

using it on variables with non-normal distributions. 
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Figure 4.2 CDF Transformation 

 
 
 
 
 
 
4.5.3   CDF + Hamming 
 
     Hamming Distance is typically used for binary data. Its basic logic is that if two 

observations have the same feature, a score of one is given to the pair, otherwise the score 

is zero as we described in Section 4.2.3.1.  The overall distance between two objects is 

computed as the percentage of the matched counts. 

     In Section 4.2.3.4, we described the method to compute similarity measures by 

dichotomizing continuous variables and treating them as binary variables. Since 

dichotomizing may lose a lot of information about the attribute, we suggest to refine the 

measure, discretize instead of dichotomize continuous variables and treat them as 

i’ i 

F(i) 

F(i’) 
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categorical variables. We first do the CDF transformation to make the variable fit in the 

range of [0  1] and then discretize continuous variables into ten bins with an increment of 

0.1 (the increment is chosen empirically). Hamming distance is computed as giving 1 if 

the pair of the observations has the values in the same bin, otherwise 0, and taking the 

percentage of the counts over the whole occurrence. The score is determined as shown in 

Table 4.2.  

     The larger the numbers of bins are, the more the definition of similarity gets closer to 

the use of continuous variable. In the current study, we generated ten bins for all cases in 

order to compare the clustering results from four clustering practice with four different 

similarity measures with the same number of bins.  We leave the determination of 

optimal number of bins for each variable as future work. 

 

 

  Observation i 

 Bin I II III IV V VI VII VIII VIIII X 

Observation j 

I 1 0 0 0 0 0 0 0 0 0 
II 0 1 0 0 0 0 0 0 0 0 
III 0 0 1 0 0 0 0 0 0 0 
IV 0 0 0 1 0 0 0 0 0 0 
V 0 0 0 0 1 0 0 0 0 0 
VI 0 0 0 0 0 1 0 0 0 0 
VII 0 0 0 0 0 0 1 0 0 0 
VIII 0 0 0 0 0 0 0 1 0 0 
VIIII 0 0 0 0 0 0 0 0 1 0 

X 0 0 0 0 0 0 0 0 0 1 
 
 

Table 4.2  Match Scores for Hamming Distance 
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4.5.4   CDF + Categorical 1 
 
     Categorical Method 1 is the applied measure of Hamming distance. Since we 

discretize continuous variables, generated categorical variables have a specific ordering. 

Therefore, those observations that have values in neighboring classes are more similar to 

each other than the ones with values in more distant classes. There is no rule of thumb for 

deciding how many neighbor classes should be included and how much score should be 

given. Therefore, we start out by giving half score for one-mismatch case (CDF + 

Categorical 1 method) and two thirds and one third to one-mismatch and two-mismatch 

cases, respectively, (CDF + Categorical 2 method) in order to see how much the change 

in definition matters. 

     After discretizing the variable into 10 classes, we give score 1 to the matching pairs 

and 0.5 to the pairs that are not matching exactly but the difference is just 1 neighboring 

class. By giving a partial score to the “not a match, but close” case, we attempt to include 

more information regarding the similarity between two observations from a continuous 

variable which otherwise could have been lost more in the dichotomization case.  This 

idea is shown in Table 4.3. For example, if the k’th attribute for House i is in the class V 

and so as House j, the score will be 1.  If the House j’s value is in the class VI while 

House i stays in the class V, then the score will be 0.5.  Comparing to the CDF + 

Hamming case, we included more information about the continuous variable by including 

“not a match, but close” case in this way. 
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  Observation i 

 Bin I II III IV V VI VII VIII VIIII X 

Observation j 

I 1 0.5 0 0 0 0 0 0 0 0 
II 0.5 1 0.5 0 0 0 0 0 0 0 
III 0 0.5 1 0.5 0 0 0 0 0 0 
IV 0 0 0.5 1 0.5 0 0 0 0 0 
V 0 0 0 0.5 1 0.5 0 0 0 0 
VI 0 0 0 0 0.5 1 0.5 0 0 0 
VII 0 0 0 0 0 0.5 1 0.5 0 0 
VIII 0 0 0 0 0 0 0.5 1 0.5 0 
VIIII 0 0 0 0 0 0 0 0.5 1 0.5 

X 0 0 0 0 0 0 0 0 0.5 1 
 
 

Table 4.3  Match Scores for Categorical Method 1 
 
 
 
4.5.5   CDF + Categorical 2  
 
     Categorical 2 Method is the same as Categorical 1 Method except for the scoring 

scheme. Now we give 0.6 for the non-matching case with the distance of one bin and 0.3 

for the non-matching case with the distance of two bins. This concept is shown in Table 

4.4.  These partial scores are given by attempting to reflect closeness of two observations 

with more information than simply giving the same score (zero) for mismatching cases. 
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  Observation i 
 Bin I II III IV V VI VII VIII VIIII X 

Observation j 

I 1 0.6 0.3 0 0 0 0 0 0 0 
II 0.6 1 0.6 0.3 0 0 0 0 0 0 
III 0.3 0.6 1 0.6 0.3 0 0 0 0 0 
IV 0 0.3 0.6 1 0.6 0.3 0 0 0 0 
V 0 0 0.3 0.6 1 0.6 0.3 0 0 0 
VI 0 0 0 0.3 0.6 1 0.6 0.3 0 0 
VII 0 0 0 0 0.3 0.6 1 0.6 0.3 0 
VIII 0 0 0 0 0 0.3 0.6 1 0.6 0.3 
VIIII 0 0 0 0 0 0 0.3 0.6 1 0.6 

X 0 0 0 0 0 0 0 0.3 0.6 1 
 
 

Table 4.4  Match Scores for Categorical Method 2 
 
 
 
4.6   Comparison of Clustering Methods 
 
     In order to compare the multiple clustering methods, we employ weighted mean 

squared errors (WMSE) from OLS conducted in each cluster as Bourassa et.al. (1999) 

compared k- means and Hierarchical clustering in their study. The smaller the WMSE is, 

the better the clustering method is for a given set of data. Weighted MSE is calculated as 

follows. 
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4.7 Determination of the Number of Clusters 
 
     Choosing the number of clusters in hierarchical clustering means choosing at which 

level the dendrogram should be cut.  It is obvious that depending on the shape and the 

pattern of a dendrogram, the “best” number of clusters for given data differs. There are a 

few methods suggested to determine the number of clusters in different disciplines and 

this issue is still an undergoing research topic.   

     Since we use WMSE to choose the clustering method, by using the same criterion, we 

try to identify the “knee-point” by plotting WMSE. The knee-point is a point where the 

change in WMSE is small when the WMSE with a certain number of clusters is 

compared to the WMSE with one more cluster.  When there is a tradeoff relationship 

between two variables (in our case, the number of clusters and WMSE), finding a knee 

point is a commonly used method (See for example Salvador and Chan (2004)).  
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4.8. Conclusion 
 
     In this chapter, components of Cluster Analysis have been discussed. Cluster Analysis 

consists of three major elements, clustering algorithms, clustering criteria and similarity 

measures. When we handle clustering variables with different units and types 

(continuous, binary or categorical), we have to pay attention to the choice of the 

similarity measures although existing studies seem to ignore the importance of this 

choice. 

    The use of Euclidean distance faces the problem of adding up variables with different 

units.  In addition, Euclidean distance implicitly assigns more weighting to attributes with 

large ranges than those with small ranges. Standardized Euclidean distance solves this 

issue to some extent. However, it is not suitable for the case with mixed variables, and 

furthermore, it does not completely solve the issue of variables with different ranges 

since the standardization does not make variables to fall into equal ranges. 

     We introduced four different similarity measures in order to overcome these issues as 

much as possible. In the following chapter, we apply them to our hedonic study. 
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CHAPTER 5 
 

APPLICATION OF CLUSTER ANALYSIS TO LAKE ERIE CASE  
 
 
 
 
5.1  Data 
 
     We implemented two sets of Cluster Analysis, one is by using individual housing data 

directly and the other is by using census block group. In general, using the smallest unit 

possible (here, individual houses) as the minimum building block of the clustering is 

ideal since we do not have to assume anything about the underlying structure. Including 

census block group as the building block (smallest unit) in Cluster Analysis means that 

we assume the houses within the same census block group belong to the same housing 

submarket. The reason for the use of census block group is that it ensures the houses 

which share the same or very similar “neighborhood” are categorized into the same 

cluster. Separately, Bates (2006) used census block group as the smallest unit in her 

clustering since individual housing data was not available. Therefore, the use of census 

block group provides us with the comparison of the methods in terms of the assumption 

we have to make for the use of census block group and the effect of grouping 

geographical neighbors together.  
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     The following variables are included as the “filter” for clustering in both cases.  

• Median household income (census block group level) 

• Distance to the closest city 

• Distance to the Lake coast line 

• X, Y coordinates 

• Municipality (City, Village, Township) 

The inclusion of the median household income is based on the household sorting theory. 

It is observed that households tend to sort themselves into neighborhoods with similar 

household income, education and race. Since it is often the case that income, education 

and race are highly correlated, we include household income in order to represent one of 

the main sorting factors.  Distance to the closest city is included because monocentric 

model theorized that distance to city is important in terms of transportation costs to 

employment centers and shopping destinations. The theory assumes the tradeoff between 

the land price and transportation costs. Municipality is included based on the Tiebout 

model. Tiebout states that households sort themselves into neighborhoods according to a 

bundle of public goods and services provided by local municipalities. Distance to the 

Lake coast line is included based on the same theory since we consider that the amenities 

the Lake provide have gradient effects over the houses and differ for the houses close to 

the Lake and the ones away from the Lake. Especially because we are interested in the 

influence of water quality on housing prices, we included this variable in order to pick up 

the Lake’s effect on the market segmentation. X, Y coordinates are included for two 

reasons. One is because in housing market, the physical location of a house is very 
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important, and the other is because these values become the sorting factor for collecting 

the neighborhood houses together in the same cluster.  We are not going to include these 

variables into the first stage or second stage of hedonic analysis directly in order to avoid 

influencing the variability of each variable in the estimation stage. 

     Distance to the closest city is computed by using road network for 21 cities from 

individual houses or the centroids of the census block groups. Cities included for the 

distance computation are listed in Table 5.1 and city locations are shown in Figure 5.1.    

 

 
Amherst Clyde North Olmsted  Port Clinton  
Avon  Elyria  Northwood  Sandusky  
Avon Lake Fremont  Oberlin  Sheffield Lake  
Bay Village Huron  Olmsted Falls  Strongsville  
Bellevue  Lorain  Oregon  Vermilion  
      Westlake  

 
 

Table 5.1. List of Cities Included for “Distance to the Closest City” Calculation 
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Figure 5.1  Location of Cities Included for “Distance to the Closest City” Calculation 
 
 
  

 

    Distance to the lake coast line is measured as the straight line distance between a house 

or a centroid point and the closest coast line. 211 distinguishable municipalities 

(townships, cities, villages) are included for the Municipality variable. Each observation 

is assigned to one municipality. The map identifying the boundaries of municipalities is 

found in Figure 5.2.  
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Figure 5.2  Cities, Villages and Townships Boundaries for Four Counties 

 

     Since we have both continuous (median household income, distance, x and y 

coordinates) and categorical (municipality) variables, it is important to pay attention to 

the choice of dissimilarity measures for the reason we discussed in Chapter 4.  For both 

individual houses and the census block group case, we implemented four types of cluster 

analysis by using different dissimilarity measures explained in the previous chapter, 

namely, CDF transformation, CDF + Hamming, CDF + Categorical 1 and CDF + 

Categorical 2. Since median household income, distance to the closest city and distance 

to the coast line are continuous variables, we transform these as specified in each 

clustering method.  X, Y coordinates are included by rescaling the variable into zero and 

one range without changing the distribution or relative magnitude.  These coordinates are 

not quantized.  Municipality variable is numbered from 1 through 211 and the similarity 

is coded in the Hamming way. In other words, it is set to one if the observations are in the 

same municipality and zero otherwise. 
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     Variables used in clustering should reflect households’ decision making process as 

well as the formation of submarkets. Although one may think that including as many 

variables as possible for clustering may help determine more realistic submarkets, it is 

not necessarily the case because of two reasons. One is because as the number of 

attributes increase in our clustering, the more “noise” we introduce in the clustering 

process. Furthermore, the distance computed between objects starts making less sense 

because many dissimilar objects could have very similar computed distances due to the 

cases such as “High value for A attribute + Low for B attribute” for object i and “Low for 

A, High for B” for object j.  This is a commonly known problem, called “the curse of 

dimensionality” in the area of Pattern Recognition or Machine Learning in Engineering.  

The other reason for not including as many attributes as possible in clustering is related to 

the estimation of the hedonic price function.  If we include the same variables used in the 

clustering into hedonic models, it is possible to cause the endogeneity problem.  For 

example, if we use school district ranking as our clustering variable, the variations of this 

variable in each cluster are smaller than the case of not including it in the clustering. 

Therefore, if we include school district ranking in both clustering and the estimation of 

the hedonic price function, it will affect both the magnitude and the variance of the 

coefficient estimated.  However, it is also true that the variables which determine the 

submarkets are the attributes considered in the housing purchases’ decisions as well.  
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     Therefore, it is important to choose the “right” amount of variables that are good 

representatives regarding the market segmentation for Cluster Analysis, and the variables 

used for clustering should be independent of the variables evaluated in the hedonic 

analysis, in our case, the water quality variables. 

 

5.2.  Clustering with Individual Houses 
 
     In this section, we report the clustering outcome and analysis for the case conducted 

by using individual houses data.  Matlab is used for all clustering. Although there are 

built-in codes for Cluster Analysis, we added our own similarity measures into the codes. 

By implementing clustering with four different distance measures, we produced 

dendrograms as shown in Figure 5.3 – Figure 5.6.  The dendrogram for CDF 

transformation looks different from the other three while the one for Categorical 1 and 

Categorical 2 appear quite similar to each other. 
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5.2.1  Comparison of Clustering Methods  
                
     In order to determine which clustering method works the best given the data, we 

compute weighted mean squared error (WMSE) for each clustering method.  For each 

clustering method, we determine which observations are assigned to which cluster for the 

cases of number of clusters from one to twenty.  OLS models which will be discussed in 

detail in the following chapter are estimated for each cluster, and WMSE is computed by 

using mean squared errors from OLS estimations for each cluster. Since number of 

clusters affects the magnitude of squared errors, we compare each method for the same 

number of clusters generated. WMSE for some number of clusters cannot be computed 

due to singularity of one or more variables.  Calculated WMSE is listed in Table 5.2. 

Highlighted values are the minimum WMSE for a certain number of clusters created.  By 

looking at the highlighted values, it is possible to say that Hamming method and 

Categorical 1 method have the smallest WMSE values for each cluster.  By assuming that 

the number of clusters is greater than six, Categorical 1 method is a more likely candidate 

for the clustering given our housing data. 

    Once we choose the method of clustering, determining the optimal number of clusters 

is the next issue.  As discussed in section 4.7 in chapter 4, we search the number of 

clusters by finding the “knee-point”.  Figure 5.7 plots WMSE values for the Categorical 1 

method. In this figure, the knee-point can be identified around cluster numbers eleven 

and twelve.  Weighted R-squared value indicates that eleven has better fit as shown in 

Table 5.3.  Therefore, we choose to adopt Categorical 1 method with the number of 

clusters being equal to eleven for individual houses case. 
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N. 
Cluster CDF Hamming Categorical 1 Categorical 2 

1 600.22 600.22 600.22 600.22 
2 285.45 313.13 283.03 357.34 
3 232.82 183.23 211.32 338.31 
4 206.47 147.24 156.09 196.39 
5 145.04 113.37 146.55 192.56 
6 93.12 104.26 119.08 115.50 
7 82.73 87.60 81.95 112.17 
8 77.31 80.09 73.65 102.20 
9 64.87 57.63 56.52 96.06 

10 54.65 51.88 52.12 93.58 
11 48.09 47.19 46.67 93.19 
12 44.08 42.22 41.64 70.08 
13 40.92 40.32 39.91 59.73 
14 38.62 37.91 38.74 49.88 
15 36.94 34.96 n.a. 47.98 
16 n.a. 33.82 n.a. 47.75 
17 n.a. 31.81 n.a. 43.15 
18 n.a. 30.26 n.a. 42.01 
19 n.a. 28.90 n.a. 36.14 
20 n.a. 26.67 n.a. 36.17 

 
 

Table 5.2. WMSE Comparison: Individual Houses Case 
 
 
 

  Categorical 1 
1 0.697 
2 0.679 
3 0.691 
4 0.673 
5 0.666 
6 0.659 
7 0.646 
8 0.651 
9 0.652 

10 0.653 
11 0.654 
12 0.652 
13 0.649 
14 0.650 

 
  

Table 5.3. Calculated Weighted R-squares for Categorical 1 method 
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Figure 5.7  WMSE for CDF + Categorical 1 Clustering Method: Individual Houses Case 

 
 
 
5.2.2  Analysis of Clustering Outcomes 
 
     By adopting Categorical 1 method with eleven clusters, the locations of the 

observations in each cluster are shown in Figure 5.8.  Although there are some clusters 

with scattered observations located away from the main group(s), in general each cluster 

has one or more geographically distinguishable groups.  Cluster 5, 6, 7 and 11 include 

lake shore observations although Cluster 7 contains a wide range of observations. 

     Table 5.4 lists the descriptive statistics for each cluster. The most distinguishable 

cluster is Cluster 11 which has the highest median household income, the highest 

discounted housing price, the biggest building square feet, the lowest age of houses, the 

highest average school district ranking and the shortest distance to the closest city. They 
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are facing the best water clarity, but the second worst fecal coliform level among other 

clusters. Cluster 1 has the largest lot acreage and houses in this cluster are located far 

from the coast line, and are also relatively far away from the closest cities. Houses in 

Cluster 3, 5, 8 and 11 are located within three kilo meter radius of the closest cities on 

average.  Housing price is the highest for Cluster 11 and the lowest for Cluster 5 while lot 

acreage is also the lowest for Cluster 5. Houses facing the lowest fecal coliform counts 

and the lowest secchi depth readings are located in Cluster 8.  
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Figure 5.8   Observations in Each Cluster: Individual Houses Case 
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Figure 5.8 (continued) 

 
                                                                                                   
                                                                                                            Figure 5.8 (continue) 
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Figure 5.8 (continued) 

 
 
 
                                                                                                     Figure 5.8 (continue) 
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Figure 5.8 (continued) 

 
                                                                                                       
                                                                                                        Figure 5.8 (continue) 
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Figure 5.8 (continued) 

 
 
 



 

92 
 

  Cluster 1 Cluster 2 
  Mean Stand.Dev. Min. Max. Mean Stand.Dev. Min. Max. 
MedHHInc 35607 5014 22857 43324 35116 6589 4999 43258 
CITY 13.99 3.78 2.12 28.03 6.32 1.78 3.31 13.41 
COAST 24.09 5.28 9.20 40.75 16.99 2.11 12.27 23.65 
DPRICE 112300 49141 50195 465841 111357 43164 50195 406395 
LOTACR 1752.61 2564.59 85.00 17800.00 1174.76 2290.50 122.00 18780.00 
BLDGSF 1667.19 640.45 480.00 5506.00 1645.88 514.21 732.00 5190.00 
BATHN 1.50 0.58 1.00 3.00 1.45 0.55 1.00 4.00 
GRGSQF 83.34 246.91 0.00 4040.00 61.20 170.29 0.00 1032.00 
AGE 22.60 23.77 0.00 171.00 20.71 18.36 0.00 95.00 
AIRCNDD 0.88 0.33 0.00 1.00 0.89 0.32 0.00 1.00 
DECKD 0.11 0.32 0.00 1.00 0.07 0.25 0.00 1.00 
FIREPLD 0.48 0.50 0.00 1.00 0.53 0.50 0.00 1.00 
SDRANK  21.88 7.16 5.00 36.00 21.49 10.73 1.00 33.00 
BEACH 28.62 6.33 10.73 48.13 20.03 2.64 15.34 28.50 
FECAL 252.60 239.50 29.28 2717.26 226.12 204.58 29.28 869.98 
SECCHI 226.99 65.32 119.23 431.78 238.51 79.94 147.07 431.78 
N 718 782 

 
 
  Cluster 3 Cluster 4 
  Mean Stand.Dev. Min. Max. Mean Stand.Dev. Min. Max. 
MedHHInc 36191 5993 30714 56859 40096 5800 14861 44706 
CITY 1.94 0.78 0.02 4.10 4.32 1.66 0.00 7.48 
COAST 4.54 0.93 2.31 6.69 6.82 1.54 3.30 12.14 
DPRICE 132955 54728 50955 379900 129309 51635 50118 354922 
LOTACR 419.93 651.84 40.00 13150.00 729.23 1549.29 117.00 19180.00 
BLDGSF 1828.76 619.88 672.00 4288.00 1785.99 583.02 676.00 4796.00 
BATHN 1.59 0.58 1.00 4.00 1.57 0.56 1.00 4.00 
GRGSQF 9.52 67.79 0.00 576.00 33.82 129.29 0.00 1020.00 
AGE 28.51 25.86 0.00 136.00 21.29 24.62 0.00 171.00 
AIRCNDD 0.98 0.13 0.00 1.00 0.93 0.25 0.00 1.00 
DECKD 0.13 0.34 0.00 1.00 0.07 0.26 0.00 1.00 
FIREPLD 0.60 0.49 0.00 1.00 0.58 0.49 0.00 1.00 
SDRANK  6.53 3.24 1.00 26.00 9.88 10.30 2.00 33.00 
BEACH 9.43 1.36 6.12 12.19 9.49 1.95 3.82 16.48 
FECAL 199.18 162.26 52.50 554.65 292.94 195.21 29.28 869.98 
SECCHI 235.51 64.66 147.53 355.58 235.19 72.74 129.55 431.78 
N 544 839 

 
 

Table 5.4. Descriptive Statistics for Each Cluster: Individual Houses Case 
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Table 5.4 (continued) 
 
 
  Cluster 5 Cluster 6 
  Mean Stand.Dev. Min. Max. Mean Stand.Dev. Min. Max. 
MedHHInc 29383 8308 6419 56859 35584 9430 6461 60499 
CITY 3.56 1.86 0.03 8.25 4.31 2.42 0.02 11.81 
COAST 2.68 1.95 0.03 7.18 1.62 1.34 0.04 8.41 
DPRICE 85840 35549 50000 311393 108182 62345 50000 582000 
LOTACR 242.48 240.93 20.00 3920.00 374.51 1363.50 16.00 43000.00 
BLDGSF 1458.15 483.72 640.00 4699.00 1563.22 598.03 196.00 4868.00 
BATHN 1.27 0.49 1.00 4.00 1.31 0.51 1.00 4.00 
GRGSQF 19.17 89.82 0.00 766.00 364.25 252.86 0.00 3651.00 
AGE 33.00 17.16 0.00 94.00 36.90 24.99 0.00 164.00 
AIRCNDD 0.96 0.21 0.00 1.00 0.37 0.48 0.00 1.00 
DECKD 0.07 0.25 0.00 1.00 0.16 0.37 0.00 1.00 
FIREPLD 0.35 0.48 0.00 1.00 0.37 0.48 0.00 1.00 
SDRANK  33.63 10.63 6.00 38.00 16.97 12.38 2.00 37.00 
BEACH 4.37 2.49 0.05 10.15 5.09 3.02 0.01 12.64 
FECAL 216.99 176.17 29.28 869.98 203.53 462.58 18.24 2717.26 
SECCHI 223.08 61.58 147.07 398.75 188.51 52.30 89.54 277.63 
N 1229 1152 

 
  Cluster 7 Cluster 8 
  Mean Stand.Dev. Min. Max. Mean Stand.Dev. Min. Max. 
MedHHInc 33433 4179 16845 44034 29800 5445 13933 41528 
CITY 18.16 5.39 3.94 29.32 2.46 1.85 0.06 13.04 
COAST 12.16 8.90 0.04 31.37 13.72 2.95 0.97 20.31 
DPRICE 95762 41709 50000 356236 86715 38941 50000 506000 
LOTACR 1069.86 5037.60 21.00 78000.00 395.28 547.96 10.00 5030.00 
BLDGSF 1494.98 481.06 204.00 3874.00 1532.40 524.57 202.00 4592.00 
BATHN 1.26 0.46 1.00 4.00 1.21 0.43 1.00 5.00 
GRGSQF 382.96 274.96 0.00 1730.00 349.62 253.87 0.00 1200.00 
AGE 46.54 31.67 1.00 162.00 52.82 30.71 0.00 159.00 
AIRCNDD 0.17 0.38 0.00 1.00 0.31 0.46 0.00 1.00 
DECKD 0.14 0.35 0.00 1.00 0.13 0.33 0.00 1.00 
FIREPLD 0.33 0.47 0.00 1.00 0.26 0.44 0.00 1.00 
SDRANK  18.01 7.57 7.00 31.00 21.50 5.01 12.00 32.00 
BEACH 22.00 13.15 0.06 43.79 19.34 3.59 2.69 27.67 
FECAL 377.05 539.30 12.00 2717.26 87.26 99.82 14.15 867.92 
SECCHI 182.59 44.88 89.54 258.80 178.50 53.25 118.96 355.58 
N 693 971 

 
 
 
              Table 5.4 (continue) 
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Table 5.4 (continued) 
 
  Cluster 9 Cluster 10 
  Mean Stand.Dev. Min. Max. Mean Stand.Dev. Min. Max. 
MedHHInc 42040 3078 34444 46509 32516 6994 8347 48854 
CITY 7.35 1.22 4.26 11.18 4.05 1.59 0.65 7.42 
COAST 11.60 1.75 8.76 16.55 11.69 1.74 7.44 15.05 
DPRICE 108561 30795 50000 332744 86877 31401 50000 334466 
LOTACR 513.56 1109.75 53.00 15060.00 228.04 191.85 10.00 2769.00 
BLDGSF 1682.51 422.32 538.00 4425.00 1457.09 516.98 576.00 5074.00 
BATHN 1.49 0.54 1.00 4.00 1.29 0.52 1.00 5.00 
GRGSQF 63.39 170.69 0.00 1200.00 60.35 154.41 0.00 835.00 
AGE 19.63 15.72 0.00 170.00 33.89 17.98 0.00 128.00 
AIRCNDD 0.92 0.28 0.00 1.00 0.89 0.32 0.00 1.00 
DECKD 0.07 0.25 0.00 1.00 0.07 0.25 0.00 1.00 
FIREPLD 0.55 0.50 0.00 1.00 0.37 0.48 0.00 1.00 
SDRANK  16.58 3.92 6.00 26.00 32.02 2.58 14.00 33.00 
BEACH 14.13 1.77 10.72 19.74 13.85 1.99 9.25 20.53 
FECAL 258.54 188.61 67.25 869.98 310.07 249.32 14.15 869.98 
SECCHI 243.13 83.72 147.89 431.78 229.11 70.93 142.49 398.75 
N 1185 1334 

 
 
  Cluster 11 
  Mean Stand.Dev. Min. Max. 
MedHHInc 50968 9758 25720 60190 
CITY 3.10 1.05 0.03 5.42 
COAST 1.25 0.90 0.00 3.57 
DPRICE 176869 95248 50609 669292 
LOTACR 388.03 485.28 20.00 10000.00 
BLDGSF 2104.02 825.27 646.00 5824.00 
BATHN 1.74 0.61 1.00 5.00 
GRGSQF 62.97 165.16 0.00 825.00 
AGE 19.00 19.11 0.00 127.00 
AIRCNDD 0.89 0.31 0.00 1.00 
DECKD 0.12 0.33 0.00 1.00 
FIREPLD 0.74 0.44 0.00 1.00 
SDRANK  5.99 4.88 4.00 38.00 
BEACH 3.41 1.58 0.04 6.00 
FECAL 370.01 177.00 67.25 869.98 
SECCHI 246.24 83.16 147.89 431.78 
N 1218 
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N. 
Clusters CDF Hamming Categorical 1 Categorical 2 

1 600.22 600.22 600.22 600.22 
2 358.80 292.43 315.17 317.70 
3 277.56 221.09 215.75 187.96 
4 257.76 164.45 159.84 157.98 
5 254.44 156.87 129.32 129.62 
6 187.39 150.21 120.56 112.34 
7 128.64 134.07 115.64 106.12 
8 124.13 84.65 109.36 103.11 
9 73.26 82.94 101.25 94.32 

10 71.26 73.12 67.88 67.55 
11 n.a. 64.29 66.32 n.a. 
12 n.a. 53.49 62.30 n.a. 
13 n.a. 52.60 56.30 n.a. 
14 n.a. 46.90 55.65 n.a. 
15 n.a. 45.77 53.47 n.a. 
16 n.a. 39.86 n.a. n.a. 
17 n.a. 39.25 n.a. n.a. 
18 n.a. 38.94 n.a. n.a. 
19 n.a. n.a. n.a. n.a. 
20 n.a. n.a. n.a. n.a. 

 
 

Table 5.5. WMSE Comparison Census Block Group Case 
 
 
 
          WMSE is plotted in Figure 5.13 together with WMSE computed from the results of 

OLS estimates without the school district ranking which causes singularity problem in 

order to see the trend after ten clusters. WMSEs computed from two specifications are 

very similar to each other. Therefore, WMSE plot without the school district ranking can 

be an appropriate alternative to find the “knee-point”.  
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     WMSE falls until around six clusters, labels till nine clusters, drops again at ten 

clusters and becomes relatively flat again although the value is decreasing by small 

amount.  Therefore, we consider cluster number ten could be a reasonable number of 

clusters. 

 
 
 

 
 
 
 

Figure 5.13. WMSE for CDF + Categorical 2 Clustering Method: CBG Case 
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Categorical 2 Categorical 2                 

(without SDRANK) 

1 0.697 0.682 
2 0.692 0.682 
3 0.682 0.672 
4 0.684 0.674 
5 0.672 0.669 
6 0.662 0.659 
7 0.653 0.650 
8 0.655 0.651 
9 0.652 0.648 

10 0.662 0.654 
11 0.652 
12 0.653 
13 0.655 
14 0.656 
15 0.658 
16 0.659 
17 0.660 
18 0.657 
19   0.657 

 
 

Table 5.6. Calculated Weighted R-squares for Categorical 2 method: CBG Case 
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Figure 5.14.  Plotted Weighted R-squares: CBG Case 

 

     Table 5.6 includes calculated weighted R-squares for the Categorical 2 method by 

using OLS with and without school district ranking and Figure 5.14 is the plot of both 

cases.  We can observe two things from this figure.  One is that although the case with 

school district ranking has higher weighted R-squares, the shapes of the figures look very 

similar to each other. The other is that after constantly decreasing until around seven 

clusters, it goes up again at ten clusters. If we assume that the trend from both 

specifications stays similar to each other, then we can expect the value to fall again after 

ten clusters and the next peak comes at 17 clusters. 
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     Considering the analysis from both WMSE and Weighted R-squares, we decide to 

choose Categorical 2 method with ten clusters for census block group case, and proceed 

with our analysis with the specification. 

 
5.3.2  Analysis of Clustering Outcomes 
 
      
    Clustered census block group locations are shown in Figure 5.15.  If we compare the 

locations of the clusters from individual house case, the similarity between the two can be 

observed.  Cluster 1+2 in the individual house case (IH) is similar to Cluster 8 of the 

CBG case. Similarly, Cluster 4 of IH and Cluster 1 of CBG, cluster 5 of IH and Cluster 9 

of CBG, Cluster 7 of IH and Cluster 2 of CBG, Cluster 8 of IH and Cluster 6 of CBG, 

and Cluster 10 of IH to Cluster 10 of CBG are located in very similar places. One reason 

for the similarity could be the fact that we use census block group level median 

household income when we cluster individual houses. The other reason might be that the 

centroid becomes a good “average point” in terms of proximity measures. Therefore, 

although the clustering substances and dissimilarity measure used are different, we can 

conclude that outcome of the clustering with given set of filtering variables returns very 

similar set of clusters. 
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Figure 5.15 Census Block Groups in Each Cluster 
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Figure 5.15 (continued) 

 
 
                                                                                               Figure 5.15(continue) 
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Figure 5.15 (continued) 

 
  
 
 
                                                                                                Figure 5.15 (continue) 
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Figure 5.15 (continued) 

 
                                                      
                                                                                                  Figure 5.15 (continue) 
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Figure 5.15 (continued) 
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     The descriptive statistics for each cluster are listed in Table 5.7.  There are two most 

distinguishable clusters. Cluster 3 has the highest median household income value, the 

highest housing price, the largest building square feet, the newest in terms of the age of 

the house and the highest school district ranking. It has very short average distances to 

the closest city and to the coast line. Fecal coliform count is the worst for this cluster and 

water clarity marks the highest value. Cluster 7 has the opposite characteristics of Cluster 

3 although they are both located very near to the lake. It has the lowest median household 

income, the lowest housing price, and the lowest average school district ranking. The 

average fecal coliform value is the lowest for this cluster and the water clarity is the 

lowest. The oldest houses are in Cluster 5 and it also has the highest average fecal 

coliform counts value. 
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  Cluster 1 Cluster 2 
  Mean St.Dev. Min. Max Mean St.Dev. Min. Max 
MEDHHINC 52239 8202 31718 62852 51946 8226 31345 72807 
CITY 5.27 2.17 0.85 8.34 9.89 5.42 4.02 28.02 
COAST 7.92 2.85 3.15 13.15 4.82 3.66 0.49 12.98 
DPRICE 117391 46334 50078 379900 112551 57326 50000 582000 
LOTACR 500.50 1093.66 20.00 19180.00 1027.40 4077.59 41.00 78000.00 
BLDGSF 1716.87 528.85 538.00 4796.00 1606.23 617.00 204.00 4868.00 
BATHN 1.51 0.55 1.00 4.00 1.32 0.52 1.00 3.00 
GRGSQF 38.75 135.55 0.00 1200.00 410.63 279.02 0.00 3651.00 
AGE 22.44 21.09 0.00 171.00 32.64 24.63 1.00 171.00 
AIRCNDD 0.94 0.24 0.00 1.00 0.35 0.48 0.00 1.00 
DECKD 0.08 0.27 0.00 1.00 0.19 0.39 0.00 1.00 
FIREPLD 0.55 0.50 0.00 1.00 0.40 0.49 0.00 1.00 
SDRANK 13.73 9.73 1.00 38.00 13.98 9.47 2.00 37.00 
FECAL 266.86 228.53 29.28 2717.26 216.97 412.19 12.00 2717.26 
SECCHI 237.72 75.52 128.96 431.78 186.73 52.10 89.54 355.58 
N 2628 781 

 
  Cluster 3 Cluster 4 
  Mean St.Dev. Min. Max Mean St.Dev. Min. Max 
MEDHHINC 62045 11700 30340 75905 43000 8757 21363 60462 
CITY 2.97 0.97 0.51 5.99 8.22 6.27 0.82 17.80 
COAST 1.43 0.81 0.15 2.65 1.01 0.72 0.01 3.39 
DPRICE 165824 94381 50427 669292 100568 53645 50000 372250 
LOTACR 359.01 452.30 16.00 10000.00 316.44 472.15 21.00 3420.00 
BLDGSF 1990.63 810.88 196.00 5824.00 1367.87 475.22 504.00 3874.00 
BATHN 1.66 0.62 1.00 5.00 1.35 0.56 1.00 4.00 
GRGSQF 109.62 200.74 0.00 912.00 303.34 267.40 0.00 1140.00 
AGE 21.79 20.92 0.00 164.00 45.31 28.71 1.00 121.00 
AIRCNDD 0.79 0.41 0.00 1.00 0.21 0.41 0.00 1.00 
DECKD 0.13 0.34 0.00 1.00 0.20 0.40 0.00 1.00 
FIREPLD 0.68 0.47 0.00 1.00 0.33 0.47 0.00 1.00 
SDRANK 6.89 5.64 2.00 38.00 16.81 4.30 13.00 22.00 
FECAL 369.47 321.89 18.24 2717.26 129.82 339.00 12.00 2528.42 
SECCHI 239.94 78.88 89.54 431.78 203.07 40.89 118.96 258.80 
  1494 280 

 
 
 

Table 5.7. Descriptive Statistics for Each Cluster: CBG Case 
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Table 5.7 (continued) 
 
 
  Cluster 5 Cluster 6 
  Mean St.Dev. Min. Max Mean St.Dev. Min. Max 
MEDHHINC 41935 5498 31470 55093 41014 7845 19703 57099 
CITY 22.43 3.31 11.85 27.23 2.98 1.93 0.55 13.91 
COAST 20.29 4.23 11.22 30.35 14.26 2.21 8.83 23.71 
DPRICE 85847 28911 50000 200558 86189 37321 50000 506000 
LOTACR 842.92 4102.40 56.00 72000.00 394.15 674.81 10.00 10690.00 
BLDGSF 1535.84 480.80 660.00 3750.00 1523.52 518.60 202.00 4592.00 
BATHN 1.23 0.43 1.00 3.00 1.20 0.43 1.00 5.00 
GRGSQF 406.70 264.63 0.00 1440.00 311.99 261.10 0.00 1200.00 
AGE 54.78 31.41 3.00 162.00 51.39 29.56 0.00 159.00 
AIRCNDD 0.21 0.41 0.00 1.00 0.39 0.49 0.00 1.00 
DECKD 0.10 0.30 0.00 1.00 0.11 0.31 0.00 1.00 
FIREPLD 0.31 0.46 0.00 1.00 0.28 0.45 0.00 1.00 
SDRANK 16.70 8.26 10.00 31.00 23.26 5.88 4.00 33.00 
FECAL 515.21 571.88 14.15 1709.34 109.24 127.09 14.15 869.98 
SECCHI 175.22 45.04 116.93 242.43 185.80 58.46 119.23 398.75 
  323 1118 

 
  Cluster 7 Cluster 8 
  Mean St.Dev. Min. Max Mean St.Dev. Min. Max 
MEDHHINC 33050 5817 9113 47221 50413 7088 31963 60618 
CITY 2.87 1.34 0.50 5.47 11.12 4.22 5.70 23.61 
COAST 1.15 0.62 0.03 2.43 21.32 4.81 13.68 36.87 
DPRICE 79038 37107 50000 385000 113343 47097 50000 465841 
LOTACR 363.41 2707.62 50.00 43000.00 1630.57 2559.94 75.00 18780.00 
BLDGSF 1496.67 558.51 204.00 4032.00 1680.34 606.58 480.00 5506.00 
BATHN 1.12 0.35 1.00 3.00 1.48 0.58 1.00 4.00 
GRGSQF 347.51 219.44 0.00 1232.00 64.37 205.63 0.00 4040.00 
AGE 53.06 26.96 1.00 155.00 22.90 20.27 0.00 150.00 
AIRCNDD 0.27 0.45 0.00 1.00 0.90 0.30 0.00 1.00 
DECKD 0.06 0.24 0.00 1.00 0.08 0.28 0.00 1.00 
FIREPLD 0.22 0.41 0.00 1.00 0.51 0.50 0.00 1.00 
SDRANK 36.64 3.27 7.00 37.00 19.33 8.04 1.00 36.00 
FECAL 65.66 25.79 46.20 142.86 227.88 209.05 29.28 2717.26 
SECCHI 156.95 37.06 92.60 195.71 234.75 74.42 128.96 431.78 
  251 1284 
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                                                                                                               Table 5.7 (continue) 
Table 5.7 (continued) 
 
 
 
  Cluster 9 Cluster 10 
  Mean St.Dev. Min. Max Mean St.Dev. Min. Max 
MEDHHINC 40489 10852 12902 74166 42466 10221 11451 69082 
CITY 3.43 1.51 0.52 6.87 4.45 1.56 0.20 6.45 
COAST 2.30 1.64 0.14 6.23 12.31 2.07 9.80 15.43 
DPRICE 88371 36404 50000 311393 92682 35341 50000 334466 
LOTACR 251.48 251.35 46.00 3920.00 241.86 208.69 10.00 3730.00 
BLDGSF 1490.21 488.38 640.00 4699.00 1493.15 514.56 576.00 5074.00 
BATHN 1.29 0.51 1.00 4.00 1.35 0.54 1.00 5.00 
GRGSQF 20.10 91.74 0.00 766.00 56.24 152.38 0.00 835.00 
AGE 32.86 17.71 0.00 94.00 28.58 19.07 0.00 128.00 
AIRCNDD 0.96 0.20 0.00 1.00 0.90 0.31 0.00 1.00 
DECKD 0.08 0.27 0.00 1.00 0.08 0.27 0.00 1.00 
FIREPLD 0.38 0.48 0.00 1.00 0.41 0.49 0.00 1.00 
SDRANK 33.09 11.21 6.00 38.00 31.58 3.97 4.00 33.00 
FECAL 201.85 154.45 29.28 869.98 323.14 257.01 29.28 869.98 
SECCHI 223.82 61.01 147.07 398.75 229.51 73.38 147.07 398.75 
  1124 1382 

 
 
 
 
5.4  Conclusion 

 
    Hierarchical clustering with four different similarity measures are implemented and 

compared. We selected one measure by comparing calculated weighted mean squared 

error (WMSE) and determined the number of clusters by finding the “knee-point” and 

also looking at weighted R-squares computed.  For the individual houses case, we 

selected the Categorical 1 method with 11 number of clusters while the Categorical 2 

method with 10 number of clusters was chosen for the census block group case.   

     As the comparison between the clusters generated by using two different data sets 

(individual houses and census block groups), we found that six out of ten clusters are 
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located in very similar places. Therefore, we can conclude that for the similar clusters, 

the centroids of the census block groups played a role as a reasonable representative of 

the houses located within the census block groups, and the generated clusters are 

relatively robust to the types of data and types of similarity measure we adopted. 
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CHAPTER 6 
 

THE FIRST STAGE OF THE HEDONIC MODEL  
ON LAKE ERIE WATER QUALITY 

 
 
 
 

6.1  The Model 
 
6.1.1 Ordinary Least Squares (OLS) 
 
    Since the hedonic price function is the locus of equilibrium points, there is little a 

priori information to determine the functional form. Following the findings from 

Cropper, Deck and McConnell (1988), four simple functional forms such as linear, 

double-log, semi-log and inverse semi-log are our possible choices.  

 
Linear:             

Semi-log:      ln

Log-linear:      ln ln ln ln

Log-log:        ln ln ln

i i j j k k l l
i j k l

i i j j k k l l
i j k l

i i j j k k l l
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i i j j
i j

P H N D E

P H N D E
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α β γ μ θ ε

α β γ μ θ ε

α β γ μ θ ε

α β γ

= + + + + +

= + + + + +

= + + + + +
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
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D Eμ θ ε+ + +∑ ∑

 

     By examining the distribution of each variable (diagonal figures in Figure 6.1. for all 

data, Figure 6.2 – 6.12 for each cluster), we choose to take the logarithm of the following 

variables. 
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• Discounted Housing Price (base year = 1996) 

• Lot acreage 

• Building Square Feet 

• Distance to the Closest Beach 

• Fecal 

• Secchi 

     Since the Garage Square Feet variable contains sufficiently large number of zeros 

indicating there is no garage at the house, we decide not to take the logarithm of this 

variable. In order to incorporate the vintage effect, we include the squared house age 

variable in addition to the linear age variable. Except for school district ranking, all the 

variables are significant. 
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*From left to right (and top to bottom), variables are DPRICE, LOTACR, BLDGSF, BEACHDIST, 
FECAL and SECCHI. Diagonal figures are the histograms of individual variables, and off-diagonal figures 
show the columns of X plotted against the columns of Y. 
 

 
Figure 6.1. Distribution of OLS Variables: All Data 
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Figure 6.2. Distribution of OLS Variables: Cluster 1, IH Case 
 
 

 
 

Figure 6.3. Distribution of OLS Variables: Cluster 2, IH Case 
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Figure 6.4. Distribution of OLS Variables: Cluster 3, IH Case 
 
 
 

      
 
 

                         Figure 6.5. Distribution of OLS Variables: Cluster 4, IH Case 
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Figure 6.6. Distribution of OLS Variables: Cluster 5, IH Case 

 
 

 
 
 

Figure 6.7. Distribution of OLS Variables: Cluster 6, IH Case 
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Figure 6.8. Distribution of OLS Variables: Cluster 7, IH Case 
 
 

                                
 
 

Figure 6.9. Distribution of OLS Variables: Cluster 8, IH Case 
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Figure 6.10. Distribution of OLS Variables: Cluster 9, IH Case 
 
 

 
 
 

Figure 6.11. Distribution of OLS Variables: Cluster 10, IH Case 
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Figure 6.12. Distribution of OLS Variables: Cluster 11, IH Case 
 
 

 
6.1.2  Spatial Hedonic Model 
 
     GMM methodology introduced by Kelejian and Prucha (1998) is used for the 

estimation of the spatial hedonic price function. In order to determine the spatial hedonic 

model specification and the appropriate weight matrix, we tested weight matrices with 

four different cutoff distances, 200, 400, 800 and 1600 by using robust Lagrange 

Multiplier (LM) test (See Section 2.3.1) for both spatial lag and error specifications. We 

first determine whether spatial lag or error model is the likely model by examining the 

robust LM test outcomes.  Given the knowledge of the spatial model specification, we 

choose the weight matrix out of four types according to the level of goodness of model 

fit.  
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     Both spatial lag and error model specifications used for the test are expressed as 

follows.  We found that in our analysis, all of the best fitted models have spatial error 

specification. 

 
Spatial Lag Model Specification 
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Spatial Error Model Specification 
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6.2  Estimated Results: Individual Houses Case 
 
     In this section, we report the estimated results of estimated OLS results, corresponding 

to the Chow test, the robust LM test results, the estimated GMM results and the derived 

marginal implicit prices (MIP) for each cluster for the individual houses case. 

 

6.2.1  Estimated Result of OLS 

     The estimated results of OLS are listed in Table 6.1. Lot acreage and building square 

feet are significant for all clusters at least at 10 percent level with the expected sign. 

Bathroom variable is statistically significant for all clusters except for cluster 3. On the 

other hand, garage square feet is not statistically significant for most of the clusters 
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except for cluster 6, 7 and 8. It is interesting to notice that the mean values of this value 

are more than 300 square feet while the overall mean is 133 square feet.  This result 

indicates that for these clusters, having large garage is an important factor. Age of the 

house is negative significant for all but cluster 10 and vintage effect (Age squared) is 

positive significant for all clusters but cluster 6 and 10. Air-conditioning and fireplace 

dummy variables are positively significant for all clusters while deck dummy is not 

significant for four clusters, 4, 5, 7, and 8. School district ranking is negative significant 

for six clusters. 

     Distance to the closest beach has mixed output. It is negative significant meaning 

being closer to the beach is valued in clusters 1, 5, 6, 7, 9 and 10 while it is positive 

significant in clusters 3, 8 and 11.   Fecal coliform counts variable also has the mixed 

results.   The expected sign of the variable is negative. We found it negative significant 

for clusters 6, 9 and 11 while positive significant for clusters 4, 7, 8 and 10.   

     We analyzed the results from different clustering methods as well as different 

specification of the models apart from the setting reported here, these positive significant 

fecal variables persist. The expected sign of the secchi variable is positive, and it is 

positively significant for clusters of 1, 2, 4, 6, 8 and 10. Positively significant result for 

the secchi variable is consistent across different clustering methods and model 

specifications. 
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  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
                      

CONSTANT 7.784 *** 7.231 *** 7.600 *** 6.620 *** 7.508 *** 

(22.16) (19.55) (17.91) (19.77) (32.32) 
LNLOTACR 0.072 *** 0.083 *** 0.038 ** 0.066 *** 0.163 *** 

(8.93) (8.92) (1.93) (5.67) (11.83) 
LNBLDGSF 0.437 *** 0.445 *** 0.445 *** 0.466 *** 0.400 *** 

(12.56) (12.93) (10.18) (12.43) (15.40) 
BATHN 0.048 ** 0.064 *** 0.007 0.068 *** 0.102 *** 

(2.42) (3.74) (0.30) (3.52) (7.20) 
GRGSQF -0.00002 -0.0001 0.0001 -0.00001 0.0001 

(-0.40) (-1.26) (0.40) (-0.07) (1.33) 
AGE -0.006 *** -0.011 *** -0.010 *** -0.007 *** -0.010 *** 

(-6.15) (-9.38) (-8.27) (-8.11) (-8.97) 
AGE2 0.00004 *** 0.0001 *** 0.0001 *** 0.00004 *** 0.0001 *** 

(4.46) (5.78) (5.44) (5.87) (6.64) 
AIRCNDD 0.094 ** 0.141 *** 0.189 * 0.191 *** 0.178 *** 

(2.54) (3.62) (1.79) (3.97) (4.13) 
DECKD 0.126 *** 0.101 *** 0.063 ** 0.048 0.020 

(4.37) (3.42) (2.21) (1.58) (0.91) 
FIREPLD 0.083 *** 0.101 *** 0.132 *** 0.085 *** 0.086 *** 

(4.09) (6.14) (5.42) (4.55) (6.13) 
SDRANK -0.001 -0.001 -0.004 -0.003 *** -0.002 *** 

(-0.58) (-0.75) (-1.33) (-2.93) (-3.77) 
LNBEACH -0.094 ** 0.027 0.140 ** 0.072 -0.033 *** 

(-2.32) (0.32) (2.08) (1.58) (-3.75) 
LNFECAL -0.009 0.011 -0.0002 0.040 *** -0.005 

(-0.70) (0.95) (-0.02) (3.50) (-0.59) 
LNSECCHI 0.065 * 0.054 * 0.038 0.117 *** 0.009 

(1.83) (1.87) (0.98) (4.24) (0.40) 
                      

AdjR2 0.57 0.64 0.66 0.67 0.66 
N 718   782   544   839   1229   

 
                 

Table 6.1. Estimated Result of OLS for Each Cluster: Individual Houses Case 
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Table 6.1 (continued) 
 
  Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 
                      

CONSTANT 6.533 *** 9.215 *** 5.766 *** 8.292 *** 6.737 *** 

(26.33) (25.56) (21.61) (34.78) (25.17) 
LNLOTACR 0.113 *** 0.020 * 0.057 *** 0.073 *** 0.102 *** 

(8.62) (1.95) (6.03) (10.13) (8.15) 
LNBLDGSF 0.480 *** 0.317 *** 0.514 *** 0.359 *** 0.448 *** 

(16.09) (8.50) (19.97) (13.45) (20.67) 
BATHN 0.132 *** 0.095 *** 0.065 *** 0.083 *** 0.067 *** 

(6.63) (3.67) (3.47) (7.42) (5.53) 
GRGSQF 0.0002 *** 0.0002 *** 0.0001 *** 0.0001 -0.00003 

(4.50) (5.92) (4.10) (1.09) (-0.58) 
AGE -0.005 *** -0.006 *** -0.005 *** -0.010 *** -0.001 

(-4.71) (-4.27) (-5.53) (-13.83) (-1.22) 
AGE2 0.00001 0.00004 *** 0.00002 ** 0.0001 *** -0.000004 

(1.51) (3.88) (2.33) (11.39) (-0.35) 
AIRCNDD 0.064 *** 0.143 *** 0.033 * 0.119 *** 0.099 *** 

(3.40) (5.05) (1.83) (4.96) (3.56) 
DECKD 0.077 *** 0.033 0.032 0.046 ** 0.082 *** 

(3.33) (1.10) (1.50) (2.42) (4.08) 
FIREPLD 0.078 *** 0.147 *** 0.132 *** 0.084 *** 0.092 *** 

(4.02) (6.37) (7.11) (7.36) (7.19) 
SDRANK 0.0004 0.003 * -0.006 *** 0.014 *** 0.008 ** 

(0.52) (1.94) (-2.99) (5.93) (2.49) 
LNBEACH -0.068 *** -0.134 *** 0.159 *** -0.074 * -0.087 ** 

(-6.38) (-13.03) (4.32) (-1.80) (-2.22) 
LNFECAL -0.027 *** 0.014 * 0.064 *** -0.017 *** 0.024 *** 

(-3.16) (1.95) (8.10) (-2.59) (2.96) 
LNSECCHI 0.172 *** -0.033 0.181 *** 0.018 0.087 *** 

(5.95) (-0.73) (6.22) (1.18) (3.89) 
                      

AdjR2 0.60 0.49 0.65 0.66 0.65 
N 1152   693   971   1185   1334   

 
 
 
 
 
 
 
  
 
        Table 6.1 (continue) 
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Table 6.1 (continued) 
 
  Cluster 11 Cluster 1+2 
          

CONSTANT 6.790 *** 7.652 *** 

(25.52) (32.75) 
LNLOTACR 0.131 *** 0.076 *** 

(10.06) (13.88) 
LNBLDGSF 0.638 *** 0.444 *** 

(21.45) (18.41) 
BATHN 0.085 *** 0.055 *** 

(5.46) (4.25) 
GRGSQF -0.00001 -0.00003 

(-0.27) (-0.84) 
AGE -0.008 *** -0.008 *** 

(-7.89) (-12.09) 
AGE2 0.0001 *** 0.00005 *** 

(4.23) (8.08) 
AIRCNDD 0.137 *** 0.122 *** 

(4.75) (4.89) 
DECKD 0.086 *** 0.116 *** 

(4.60) (5.67) 
FIREPLD 0.064 *** 0.094 *** 

(3.64) (7.29) 
SDRANK -0.010 *** -0.001 

(-6.83) (-0.95) 
LNBEACH 0.020 ** -0.092 *** 

(2.03) (-3.80) 
LNFECAL -0.074 *** 0.000 

(-6.29) (0.04) 
LNSECCHI -0.033 0.060 *** 

(-1.60) (2.68) 
          

Rbar-squared 0.85 0.60 
N 1218   1500   

 
 
 
     Given the OLS outcomes, the Chow test is implemented to see which clusters actually 

have statistically distinguishable coefficients from others. We compared each cluster one 

by one for all possible combinations.  The results can be found in Table 6.2.  The F value 
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threshold for our case is 2.039 for one percent significance level. Since clusters 1 and 2 

have the F values less than the threshold value, we merged these two clusters to form one 

market. Chow test result of the merged cluster against all others is listed in the bottom of 

the table.  Since all other clusters have F values greater than the threshold value, we 

proceed with ten clusters (1+2, 3 – 11) in the following analysis. 

 
 
  Cluster 
  1 2 3 4 5 6 7 8 9 10 11 

1 - 1.89 2.50 2.47 5.73 4.32 4.59 7.12 4.52 3.56 22.29 
2 - 3.43 1.96 4.43 5.41 7.24 8.71 4.06 4.69 20.04 
3 - 2.33 8.39 5.27 3.93 3.59 9.04 6.63 15.99 
4 - 6.66 5.48 7.02 3.72 7.14 4.75 26.81 
5 - 9.89 23.60 12.09 11.02 8.77 22.99 
6 - 12.83 7.18 13.73 9.23 17.82 
7 - 10.06 8.39 12.95 36.68 
8 - 15.45 11.38 17.33 
9 - 9.90 34.82 

10 - 21.24 
11 - 

1+2 - - 2.94 2.20 7.55 6.84 7.74 9.64 4.53 4.74 30.88 
 
 
 

Table 6.2. Chow Test Result: Individual Houses Case 
 
 
 
 
6.2.2  Estimated Result of Spatial Hedonic Model 
 
      Given the OLS outcomes and four types of weight matrices (threshold values of 200, 

400, 800 and 1600 meters), the robust LM test is implemented to specify the likely spatial 

model and the appropriate weight matrix for each cluster. Weight matrices are generated 
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by using the GEODA application (downloadable at  https://www.geoda.uiuc.edu/) and 

the robust LM tests are also conducted by GEODA. As we can observe in Figure 5.3, the 

spatial extent of houses in one cluster varies from cluster to cluster.  Since the differences 

in the distribution patterns differ significantly, we expect the cutoff distance of the best fit 

weight matrices may differ from cluster to cluster. 

     The robust LM test results are listed in Table 6.3. The preferred model is chosen as 

follows. If one is significant and the other is not, then the significant model is selected. If 

both models are significant, the one with the higher test statistics is chosen. For example, 

for the 1+2 cluster with the 800 meter weight matrix, the statistics for the lag model is not 

significant (0.76) while it is statistically significant at less than the 1 % level for the error 

model. In such cases, we choose the spatial error model simply based on the test 

outcome. For the 1+2 cluster with the 200 meter weight matrix, the test shows that both 

the lag and the error models are statistically significant at the 9 % level for the lag model 

and less than the 1 % level for the error model and the value of the statistics are 3.05 and 

46.26, respectively. Therefore, for the case both the lag and the error models are 

statistically significant, we choose the model with higher value, which is in this case the 

spatial error model. For all clusters and all weight matrices case, the spatial error 

specification is preferred.  Therefore, we proceed with the spatial error specifications for 

all clusters. 

     The spatial error models with all four weight matrices are estimated with GMM.  

GMM is implemented with MATLAB by using the Kelejian and  Prucha’s way discussed 

in section 2.3.3. We compared the estimated adjusted R-square between the models with 
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different weight matrices and choose the model with the weight matrix with the highest 

adjusted R-square. For the individual houses case, most of the preferred models are with 

the weight matrix with the 400 meter cutoff distance.  Clusters that do not have the 400 

meter weight matrix are cluster 6 (800 meter), cluster 8 (1600 meter) and cluster 10 (800 

meter). Therefore, the following analysis includes spatial error models with the preferred 

weight matrices for each cluster.   

 

 

 

 
    Cluster 

  W  1+2 3 4 5 6 7 8 9 10 11 
Lag 

200 

3.05 1.57 5.28 14.19 2.22 9.83 16.72 0.85 6.08 0.96 
(0.08) (0.21) (0.02) (0.00) (0.14) (0.00) (0.00) (0.36) (0.01) (0.33) 

Error 46.26 18.72 37.40 122.14 188.90 53.29 36.97 45.00 134.32 15.17 
  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

400 

5.49 2.83 1.62 7.97 1.32 3.97 8.71 1.39 1.36 7.51 
(0.02) (0.09) (0.20) (0.00) (0.25) (0.05) (0.00) (0.24) (0.24) (0.01) 

Error 68.13 32.10 54.28 171.90 383.87 44.95 63.13 34.01 221.05 59.60 
  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

800 

0.09 0.53 0.95 77.35 1.70 3.61 8.71 0.01 7.49 0.78 
(0.76) (0.47) (0.33) (0.00) (0.19) (0.06) (0.00) (0.91) (0.01) (0.38) 

Error 31.28 28.83 53.42 168.49 404.40 33.94 63.13 13.46 413.96 41.32 
  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

1600 

0.36 4.67 2.25 57.97 4.50 2.41 1.74 0.12 1.00 0.28 
(0.55) (0.03) (0.13) (0.00) (0.03) (0.12) (0.19) (0.73) (0.32) (0.59) 

Error 50.43 7.02 101.12 130.22 222.17 38.29 66.69 6.56 113.23 5.04 
  (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.02) 

* (   ) probability 
 
 

Table 6.3. Robust LM Test Result: Individual Houses Case 
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     Estimated results of GMM are reported in Table 6.4.  In the third row, the cutoff 

distance of the preferred weight matrix is listed.  The magnitudes of the coefficients 

estimated are not too different from the ones from the OLS estimation. However, the 

degree of statistical significance increased after controlling for the spatial effects. For 

example, the age squared term for cluster 6 is significant at the 10 percent level and the 

deck variable is significant at least at the 10 percent level for all clusters while they are 

not in the OLS estimation. As for the fecal coliform variable, two clusters, 7 and 10 

which have positive significant outcome in OLS are not significant at the 10 percent level 

in the GMM estimation.  The estimated spatial error coefficients are all positive 

significant at the one percent level. 

     The fecal coliform variable is estimated as positive and significant, in other words, the 

higher the fecal coliform counts in the Lake, the higher the housing value is, for Cluster 4 

and 8. Cluster 4 is located in Lorain County, not along the coast line, however relatively 

close to the Lake.  The average value of the fecal variable is 292 counts per ml. 

Considering that the overall mean is 255, we cannot observe any extreme condition in 

terms of fecal in this cluster. It is possible that we are omitting a variable which is 

correlated with the level of fecal and is specific to this cluster.   Interaction terms between 

the distance to the closest beach and each water quality variable are dropped from the 

model because of the mixed signs observed for the coefficients estimated for the water 

quality variables.   
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     The mean fecal value for Cluster 8 is the lowest among others, 87 counts per 100 ml. 

If there is a certain factor which costs home owners in the effort of reducing fecal 

coliform or organic matter discharges, having very low fecal may be costing them higher 

than they are willing.  If this is the reason, it is possible to have positive fecal coliform 

coefficient.  It is also possible that we omitted a variable which is related with the fecal 

coliform counts in the more general sense. 
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  Cluster 
  3 4 5 6 7 

W 400 400 800 400 400 
                      

CONSTANT 7.734 *** 7.226 *** 7.802 *** 7.228 *** 9.083 *** 

  (17.69) (21.19) (34.47) (30.69) (26.50) 
LNLOTACR 0.042 ** 0.065 *** 0.150 *** 0.092 *** 0.026 ** 

  (2.09) (5.43) (10.20) (6.93) (2.40) 
LNBLDGSF 0.414 *** 0.413 *** 0.368 *** 0.409 *** 0.319 *** 

  (9.55) (11.30) (14.56) (14.87) (9.11) 
BATHN 0.013 0.080 *** 0.092 *** 0.091 *** 0.086 *** 

  (0.58) (4.33) (6.91) (5.01) (3.54) 
GRGSQF 0.000 0.000 0.000 0.000 *** 0.000 *** 

  (0.42) (-0.02) (1.37) (4.58) (5.69) 
AGE -0.009 *** -0.007 *** -0.008 *** -0.005 *** -0.006 *** 

  (-7.28) (-7.74) (-6.53) (-5.21) (-4.82) 
AGE2 0.000 *** 0.000 *** 0.000 *** 0.000 ** 0.000 *** 

  (4.84) (5.68) (4.78) (2.14) (4.38) 
AIRCNDD 0.194 * 0.190 *** 0.160 *** 0.055 *** 0.125 *** 

  (1.90) (4.18) (3.87) (3.15) (4.69) 
DECKD 0.079 *** 0.047 * 0.035 0.071 *** 0.048 * 

  (2.85) (1.65) (1.64) (3.45) (1.72) 
FIREPLD 0.120 *** 0.081 *** 0.077 *** 0.061 *** 0.135 *** 

  (5.01) (4.51) (5.70) (3.42) (6.02) 
SDRANK -0.005 -0.003 *** -0.003 *** -0.001 0.003 * 

  (-1.47) (-3.03) (-3.23) (-0.87) (1.82) 
LNBEACH 0.160 * 0.052 -0.031 ** -0.056 *** -0.126 *** 

  (1.87) (0.95) (-2.52) (-4.01) (-10.22) 
LNFECAL 0.000 0.023 ** -0.008 -0.014 * 0.006 
  (-0.00) (2.01) (-1.00) (-1.72) (0.84) 
LNSECCHI 0.039 0.101 *** 0.012 0.163 *** -0.007 
  (1.06) (3.85) (0.55) (6.16) (-0.16) 
lambda 0.258 *** 0.272 *** 0.393 *** 0.392 *** 0.291 *** 

  (4.33) (6.86) (11.15) (15.60) (6.47) 
                      

AdjR2 0.675 0.691 0.687 0.667 0.532 
N 544   839   1229   1152   693   

 
 

Table 6.4.  GMM Result for Each Cluster: Individual Houses Case 
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Table 6.4 (continued) 
 
  Cluster  
  8 9 10 11 1+2 

W 1600 400 800 400 400 
                      

CONSTANT 5.912 *** 8.529 *** 7.410 *** 6.838 *** 7.875 *** 

  (21.16) (34.18) (25.78) (25.49) (33.53) 
LNLOTACR 0.057 *** 0.068 *** 0.095 *** 0.130 *** 0.079 *** 

  (5.72) (8.69) (7.24) (9.78) (13.26) 
LNBLDGSF 0.489 *** 0.337 *** 0.411 *** 0.625 *** 0.424 *** 

  (19.12) (12.68) (18.66) (20.94) (17.71) 
BATHN 0.055 *** 0.078 *** 0.065 *** 0.082 *** 0.050 *** 

  (3.02) (6.91) (5.60) (5.30) (3.95) 
GRGSQF 0.000 *** 0.000 0.000 0.000 0.000 
  (4.00) (0.57) (-0.98) (-0.50) (-1.15) 
AGE -0.006 *** -0.010 *** -0.001 -0.008 *** -0.007 *** 

  (-5.60) (-13.39) (-1.15) (-7.24) (-11.25) 
AGE2 0.000 *** 0.000 *** 0.000 0.000 *** 0.000 *** 

  (2.66) (10.73) (-0.33) (3.79) (7.47) 
AIRCNDD 0.027 0.105 *** 0.086 *** 0.130 *** 0.126 *** 

  (1.53) (4.47) (3.26) (4.57) (5.22) 
DECKD 0.034 * 0.048 ** 0.068 *** 0.085 *** 0.110 *** 

  (1.67) (2.55) (3.61) (4.66) (5.51) 
FIREPLD 0.105 *** 0.078 *** 0.070 *** 0.069 *** 0.087 *** 

  (5.81) (6.85) (5.57) (3.89) (6.82) 
SDRANK -0.005 ** 0.014 *** 0.009 *** -0.011 *** 0.000 
  (-2.02) (6.11) (2.65) (-6.33) (-0.67) 
LNBEACH 0.167 *** -0.083 * -0.112 ** 0.024 ** -0.104 *** 

  (3.60) (-1.70) (-1.96) (2.13) (-3.68) 
LNFECAL 0.063 *** -0.017 ** 0.008 -0.067 *** 0.001 
  (7.99) (-2.34) (0.95) (-5.39) (0.12) 
LNSECCHI 0.183 *** 0.019 0.052 ** -0.030 0.050 ** 

  (6.36) (1.25) (2.42) (-1.46) (2.29) 
lambda 0.345 *** 0.207 *** 0.410 *** 0.175 *** 0.214 *** 

  (8.73) (5.50) (10.85) (4.27) (7.73) 
                      

AdjR2 0.669 0.671 0.685 0.849 0.618 
N 971   1185   1334   1218   1500   
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6.2.3  Estimated Marginal Implicit Prices  
 
     Based on the estimated coefficient of the GMM models, marginal implicit prices 

(MIP) are computed for individual observations by using individual variables and 

estimated coefficients.  For each cluster, we used the coefficients estimated for the cluster 

and all MIP computed are merged in order to proceed to the second stage of the hedonic 

estimation. MIPs are computed as   for the variables that are entered without taking 

natural logarithm. It is    for the variables with logarithm where  is the estimated 

coefficient of the GMM model,  is the house price for the i th observation, and  is the 

quantity of the relevant variable for the i th observation.  The individual values are used 

to compute the individual specific MIPs.  

     Table 6.5 lists the descriptive statistics of the computed MIP for all data combined.  

All prices are expressed in 1996 dollars. Marginal implicit prices are interpreted as one 

unit increase in a certain variable from the current state will increase the house owner’s 

willingness to pay by the MIP amount.  For example, one year increase in a certain 

house’s age will decrease the housing price by 552 dollars. If school district ranking 

increases by one, housing price will increase by 89 dollars. This is much smaller than we 

expected.  If the house locates one kilometer away from the current place, the house 

value will decrease by 707 dollars.  We expect the fecal coliform variable to be negative. 

However, since we have mixed signs in the GMM estimation, this turns out to be 

positive. As for the secchi disk depth readings, one centimeter increase in the lake water 

clarity increases the housing value by 30 dollars. 
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     As we mentioned earlier, some of the fecal coliform counts variable have unexpected 

signs. However, we believe that the bacterial counts should have negative influence on 

housing values although it may not be significantly influencing.  In order to further 

analyze the influence of the fecal coliform counts, we select the clusters with negative 

coefficients of the fecal coliform counts and implemented a separate analysis. The result 

of the analysis will reflect only the houses whose price is affected negatively by the fecal 

coliform. 

     Furthermore, we estimate the observations with housing values which are both 

significantly and negatively influenced by the fecal coliform counts. The result of the 

analysis with this set of data will represent the houses which are influenced by the fecal 

coliform negatively and significantly.  We call the first type of the observations (with 

negative, but not necessary significant coefficients on the fecal coliform counts) “Correct 

signed” or COR, and the second type (with significantly negative coefficients) as 

“Significant” or SIG in the following analysis. COR data include clusters 3, 5, 6, 9 and 

11, total of 5,238 observations, and SIG data contains clusters 6, 9 and 11, including 

3,555 houses. MIPs computed from COR and SIG data are shown in Table 6.6. 
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  MIP for All Data (in 1996$) 
  Mean St.Dev. Min. Max. 
PLOTACR 37.39 31.69 0.03 636.32 
PBLDGSF 29.14 12.39 5.31 192.02 
PBATHN 7941.53 5146.55 660.23 55098.79 
PGRGSQF 4.57 9.87 -19.10 89.63 
PAGE -552.60 535.40 -5061.19 2498.99 
PAIRCNDD 13281.61 9736.34 1354.25 86909.57 
PDECKD 7539.45 5682.78 1703.80 57169.58 
PFIREPLD 9227.69 5005.22 3069.45 53315.20 
PSDRANK -89.42 974.28 -7095.83 4675.38 
PBEACH -707.08 15720.96 -1378243.50 61760.77 
PFECAL 7.52 79.92 -480.44 1279.02 
PSECCHI 30.34 47.69 -96.65 649.47 
ADJINC 9775.55 22732.22 -173529.05 415416.15 
N 10665 

 
 
 

Table 6.5. Estimated Marginal Implicit Prices for All Data: Individual Houses Case 
     

 

     MIPs estimated by including only COR reveals that an increase in one fecal coliform 

decreases housing value by 21.6 dollars.  This is MIP for the houses which have negative 

influence from the bacterial counts. MIP for the fecal coliform for the houses negatively 

significantly influenced by the fecal coliform is - 30.5, meaning the increase in one fecal 

coliform count will decrease the housing value by 30.5 dollars. It is expected to have 

larger value for the SIG data than the COR data since the houses that are significantly 

affected by the fecal coliform should have higher MIP values compared to the data which 

include both significant and insignificant values. 
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  MIP for Fecal COR Data (in 1996$) MIP for Fecal SIG Data (in 1996$) 
  Mean St.Dev. Min. Max. Mean St.Dev. Min. Max. 
PLOTACR 49.3 36.2 0.1 636.3 49.5 39.0 0.1 636.3 
PBLDGSF 31.0 14.8 5.3 187.9 34.2 16.5 8.0 187.9 
PBATHN 9345.9 6143.7 660.2 55098.8 11005.3 6358.4 3883.4 55098.8 
PGRGSQF 7.0 9.2 -15.4 89.6 5.1 10.2 -15.4 89.6 
PAGE -697.9 606.3 -5061.2 2499.0 -797.8 623.3 -5061.2 2499.0 
PAIRCNDD 14882.7 10290.8 2771.5 86909.6 13607.6 10496.1 2771.5 86909.6 
PDECKD 8040.3 6464.8 1756.7 57169.6 9410.4 6913.4 2390.0 57169.6 
PFIREPLD 9221.7 5468.1 3069.5 45871.9 9112.0 5146.0 3069.5 45871.9 
PSDRANK -228.0 1268.5 -7095.8 4675.4 -165.8 1539.2 -7095.8 4675.4 
PBEACH -707.5 19709.6 -1378243 61760.8 -971.2 23959.8 -1378243 61760.8 
PFECAL -21.6 39.5 -480.4 0.0 -30.5 45.7 -480.4 -0.3 
PSECCHI 22.0 52.9 -96.6 516.7 27.7 63.5 -96.6 516.7 
ADJINC 11172 22757 -173529 415416 15723 24657 -173529 415416 

N 5238 3555 
 
 

Table 6.6.  Estimated Marginal Implicit Prices for Fecal COR and Fecal SIG Data: 
Individual Houses Case 

 
 
 
  MIP for Secchi COR Data (in 1996$) MIP for Secchi SIG Data (in 1996$) 
  Mean St.Dev. Min. Max. Mean St.Dev. Min. Max. 
PLOTACR 34.7 27.9 0.1 632.9 31.5 26.8 0.1 632.9 
PBLDGSF 26.7 8.9 5.3 192.0 28.3 9.5 5.9 192.0 
PBATHN 6996.0 3962.6 660.2 53226.2 7001.5 4124.1 2521.3 53226.2 
PGRGSQF 4.5 9.0 -19.1 89.6 2.8 10.0 -19.1 89.6 
PAGE -500.4 433.7 -3393.6 2499.0 -441.2 385.5 -3063.6 1565.4 
PAIRCNDD 12039.4 8794.6 1354.3 73602.5 10520.8 8751.7 1354.3 67575.5 
PDECKD 6718.4 4527.5 1703.8 51384.2 7466.9 4818.0 1703.8 51384.2 
PFIREPLD 8534.2 4403.0 3069.5 53315.2 8280.0 4071.2 3069.5 53315.2 
PSDRANK 129.5 714.7 -2778.4 4675.4 -8.3 475.0 -2778.4 2850.3 
PBEACH -732 15298 -1378243 7671 -919 18667 -1378243 7671 
PFECAL 15.1 81.4 -272.9 1279.0 26.6 97.9 -272.9 1279.0 
PSECCHI 40.5 46.3 1.5 649.5 56.0 49.9 6.0 649.5 
ADJINC 8111.5 19887 -173529.1 415416.2 9595.6 21280.5 -173529.1 228782.6 

N 8754 5796 
 
 

Table 6.7.  Estimated Marginal Implicit Prices for Secchi COR and Secchi SIG Data: 
Individual Houses Case 
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     We also construct the data for the secchi variable in the same way as we do with the 

fecal. The COR data for secchi include the observations in the cluster with positive 

coefficients for the secchi variable. All clusters except for cluster 7 and 11 are included in 

this set of data and the total number of observations is 8,754. The SIG data is constructed 

with five clusters, 4, 6, 8, 10 and 1+2.  The estimated MIPs are listed in Table 6.7. For 

houses in the COR data, one centimeter increase in water clarity increases the housing 

value by 40.5 dollars while it is 56 dollars for the observations in the SIG data. 

 

 
6.3  Estimated Results: Census Block Group Case 
 
     In this section, the result of the first stage estimation using the clustering with census 

block group is reported.  Given the results of clustering with census block groups, we 

assigned individual houses data to each cluster. Therefore, data included in the analysis is 

the same as the individual houses cases. 

 
6.3.1  Estimated Result of OLS 
 
     Lot acreage is positive significant for all but cluster 7 while building square feet is 

significant for all clusters.  Number of bathrooms is also significant for all but cluster 7.  

Interestingly, the estimated garage square feet coefficients have mixed result. Five 

clusters have positive significant outcome while three clusters have negative significant 

result. The clusters with negative coefficients for garage square feet have significantly 

smaller garage size comparing to the ones with positive significant coefficients.  Age of 

the house variable is significant at least at the five percent level while age squares is 
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significant all but for cluster 7.  Clusters 1, 3, 6 and 9 have expected signs on school 

district ranking while clusters 2, 4 and 10 have unexpected positive signs.  The air-

conditioning variable is positive significant for all but cluster 4 while the deck dummy is 

significant except for clusters 4 and 9. The fireplace dummy variable is statistically 

significant for all clusters. 

     Distance to the closest beach is negatively significant for clusters 1, 2, 7, 8 and 9, 

indicating that housing price of the relevant houses have an inverse relation with the 

distance from the beach.  On the other hand, cluster 6 has positive significant coefficient 

for the value, indicating the higher the housing price is, the more the distance from the 

closest beach is. The fecal coliform variable is negative significant in two clusters, 2 and 

3, while it is positive significant in clusters 5, 6 and 10.  Secchi disk reading is positive 

significant for clusters 1, 2, 6, 8 and 10.  The signs are consistently positive for secchi 

values across all clusters. 
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   Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
                      

CONSTANT 7.820 *** 7.077 *** 6.434 *** 7.434 *** 8.670 *** 

(47.46) (23.03) (27.76) (9.78) (16.20) 
LNLOTACR 0.077 *** 0.052 *** 0.111 *** -0.080 ** 0.055 *** 

(12.86) (4.24) (8.39) (-2.52) (4.06) 
LNBLDGSF 0.423 *** 0.442 *** 0.628 *** 0.451 *** 0.311 *** 

(21.66) (12.09) (21.85) (5.46) (7.17) 
BATHN 0.068 *** 0.079 *** 0.138 *** 0.151 *** 0.087 *** 

(7.12) (3.26) (8.64) (3.19) (2.80) 
GRGSQF -0.0002 *** 0.0002 *** 0.000004 0.0002 * 0.0002 *** 

(-5.02) (6.04) (0.11) (1.86) (4.85) 
AGE -0.008 *** -0.005 *** -0.006 *** -0.006 ** -0.005 *** 

(-16.42) (-4.10) (-7.45) (-2.01) (-3.27) 
AGE2 0.0001 *** 0.00002 ** 0.00003 *** 0.0001 *** 0.00003 ** 

(12.13) (2.56) (3.89) (2.65) (2.45) 
AIRCNDD 0.159 *** 0.080 *** 0.074 *** 0.068 0.130 *** 

(7.17) (3.52) (3.37) (1.26) (4.25) 
DECKD 0.069 *** 0.080 *** 0.086 *** 0.016 0.091 ** 

(4.76) (2.97) (4.56) (0.30) (2.30) 
FIREPLD 0.103 *** 0.086 *** 0.084 *** 0.209 *** 0.101 *** 

(10.66) (3.76) (4.85) (4.56) (3.73) 
SDRANK -0.006 *** 0.005 *** -0.007 *** 0.017 *** -0.002 

(-13.73) (4.06) (-5.04) (3.24) (-1.25) 
LNBEACH -0.042 *** -0.074 *** -0.011 -0.036 -0.049 

(-2.82) (-5.29) (-1.19) (-1.47) (-0.65) 
LNFECAL -0.001 -0.050 *** -0.048 *** -0.003 0.016 ** 

(-0.28) (-5.46) (-5.87) (-0.16) (2.07) 
LNSECCHI 0.040 *** 0.205 *** 0.030 0.124 0.015 
  (2.94)   (5.93)   (1.45)   (1.27)   (0.29)   

AdjR2 0.70 0.54 0.80 0.41 0.55 
N 2628   781   1494   280   323   

 
 

Table 6.8. Estimated Result of OLS for Each Cluster: CBG Case 
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Table 6.8 (continued) 
 
 
    
  Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 
                      

CONSTANT 5.802 *** 8.421 *** 7.788 *** 7.322 *** 6.736 *** 

(22.78) (15.36) (30.33) (29.81) (27.03) 
LNLOTACR 0.058 *** 0.030 0.078 *** 0.164 *** 0.117 *** 

(6.90) (1.17) (13.55) (11.16) (9.72) 
LNBLDGSF 0.504 *** 0.412 *** 0.436 *** 0.415 *** 0.446 *** 

(21.58) (8.42) (17.08) (15.04) (20.16) 
BATHN 0.071 *** 0.042 0.044 *** 0.101 *** 0.068 *** 

(4.22) (0.89) (3.19) (6.94) (5.86) 
GRGSQF 0.0001 *** 0.0002 ** -0.000069 * 0.0002 -0.0001 * 

(4.19) (2.21) (-1.71) (1.62) (-1.69) 
AGE -0.005 *** -0.004 ** -0.008 *** -0.010 *** -0.007 *** 

(-5.02) (-2.17) (-9.83) (-8.01) (-9.14) 
AGE2 0.0000 * 0.00002 0.00005 *** 0.0001 *** 0.00005 *** 

(1.77) (1.03) (5.95) (6.00) (5.24) 
AIRCNDD 0.067 *** 0.112 *** 0.126 *** 0.206 *** 0.121 *** 

(4.08) (3.21) (4.54) (4.23) (4.34) 
DECKD 0.043 ** 0.108 * 0.104 *** 0.025 0.075 *** 

(2.17) (1.71) (4.48) (1.11) (3.92) 
FIREPLD 0.110 *** 0.098 ** 0.089 *** 0.088 *** 0.092 *** 

(6.70) (2.42) (6.33) (6.07) (7.45) 
SDRANK -0.006 *** 0.003 0.000 -0.002 *** 0.003 ** 

(-3.71) (0.55) (0.58) (-3.52) (1.84) 
LNBEACH 0.225 *** -0.460 *** -0.111 *** -0.025 ** 0.016 

(4.86) (-4.25) (-4.01) (-2.58) (0.51) 
LNFECAL 0.053 *** 0.066 -0.004 -0.004 0.021 *** 

(7.57) (1.19) (-0.47) (-0.43) (2.58) 
LNSECCHI 0.149 *** 0.037 0.060 ** 0.012 0.079 *** 

  (5.89)   (0.63)   (2.53)   (0.48)   (3.50)   

AdjR2 0.66 0.44 0.60 0.65 0.70 
N 1118   251   1284   1124   1382   
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     As in the case with individual houses, we test whether the estimated coefficients are 

significantly different from each other for every cluster. The chow test result is listed in 

Table 6.9.  There is no cluster with an F value less than 2. Therefore, we do not merge 

any clusters and treat each cluster as a separate submarket. 

 

 
  Cluster  
  1 2 3 4 5 6 7 8 9 10 

1 - 20.50 34.07 14.04 8.60 17.56 8.97 5.84 7.20 5.59 
2 - 18.11 6.62 3.32 9.55 4.52 5.94 15.51 12.14 
3 - 14.54 8.93 14.18 4.84 24.73 16.94 17.43 
4 - 5.59 13.86 4.41 8.26 14.22 10.65 
5 - 5.15 1.86 4.39 5.05 4.97 
6 - 4.66 9.00 9.06 9.42 
7 - 2.54 6.37 4.90 
8 - 6.49 2.44 
9 - 4.83 

10                   - 
 
 

Table 6.9. Chow Test Result: CBG Case 
 
 
6.3.2  Estimated Result of Spatial Hedonic Model 
 
     In order to estimate the spatial hedonic models, we first implemented robust LM test 

by using four different weight specifications as in the case of individual houses. Except 

for cluster 5 with weight matrix of 1600 meter cutoff distance (Lag model is preferred) 

and cluster 7 with weight matrix of 1600 meter cutoff distance (spatial models are not 

significant), in all clusters and weight matrices the spatial error model is the preferred 

model.  We compare the adjusted R-squares with the preferred models among different 
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weight specifications and choose the highest R-squares valued model for the use of the 

following analysis. As for clusters 5 and 7, spatial error specification with weight 

matrices of 800 meter and 400 meter are chosen after the comparison.  Therefore, the 

spatial error model is used for all clusters.  Estimated GMM results can be found in Table 

6.11 with the selected weight cutoff values expressed in the third row. 

 
 
    Cluster 

  W 1 2 3 4 5 6 7 8 9 10 
Lag 

200 

5.00 5.92 3.11 1.41 0.24 18.32 0.31 1.93 17.79 13.94 
(0.03) (0.01) (0.08) (0.23) (0.62) (0.00) (0.58) (0.16) (0.00) (0.00) 

Error 195.75 63.53 261.87 47.08 6.38 36.67 24.91 17.88 99.95 199.40 
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

400 

4.44 17.15 3.77 0.24 2.57 15.94 0.28 3.65 6.34 3.95 
(0.04) (0.00) (0.05) (0.63) (0.11) (0.00) (0.60) (0.06) (0.01) (0.05) 

Error 261.26 53.64 793.97 45.42 7.27 80.89 31.35 25.01 140.05 277.88 
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

800 

0.99 10.31 5.19 0.30 2.01 12.28 3.42 0.10 71.58 2.86 
  (0.32) (0.00) (0.02) (0.58) (0.16) (0.00) (0.06) (0.75) (0.00) (0.09) 

Error 269.59 87.61 736.58 39.47 7.87 70.25 37.86 10.35 131.92 424.87 
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

Lag 

1600 

4.08 7.61 4.71 0.15 11.06 6.52 0.01 0.01 58.53 1.79 
(0.04) (0.01) (0.03) (0.70) (0.00) (0.01) (0.90) (0.94) (0.00) (0.18) 

Error 499.62 104.15 282.26 40.72 0.24 61.40 0.35 34.82 99.33 27.22 
  (0.00) (0.00) (0.00) (0.00) (0.63) (0.00) (0.55) (0.00) (0.00) (0.00) 

 
 

Table 6.10. Robust LM Test Result: CBG Case 
 
 
 
     The magnitudes and signs of estimated coefficients do not change significantly 

between OLS and GMM. Although for the case of fecal coliform in cluster 10 is positive 

significance for the individual case, it is not significant for the GMM case.  The spatial 

error coefficients are all positive significant at the 1 percent level. 
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     We have unexpected positive significant signs for the fecal variable for Cluster 5 and 

Cluster 6. Cluster 6 is almost identical to Cluster 8 in the individual houses case which 

also has a positive significant result for fecal. Cluster 6 has a very high mean fecal value 

among others, 515 counts per 100 ml while the overall average is 255.  The area this 

cluster covers has a very high percentage of agricultural land. Since one source of fecal 

coliform is organic discharges from farm lands, it may be possible to say that many house 

owners of this area actually benefit from discharging organic matters into streams. We 

cannot prove how this possibility may affect their housing price with data at hand, but 

again, it is possible to assume that there is omitted variable which is related to fecal and is 

causing the positive effect on the housing price. 
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  Cluster 
  1 2 3 4 5 
W 400 1600 400 400 800 
                      

CONSTANT 8.119 *** 7.400 *** 6.980 *** 7.679 *** 8.582 *** 

  (48.29) (25.21) (30.29) (10.91) (15.83) 
LNLOTACR 0.072 *** 0.060 *** 0.122 *** -0.068 ** 0.061 *** 

  (10.86) (4.74) (9.07) (-2.16) (4.30) 
LNBLDGSF 0.389 *** 0.402 *** 0.547 *** 0.482 *** 0.318 *** 

  (19.97) (11.83) (19.63) (6.26) (7.74) 
BATHN 0.062 *** 0.061 *** 0.115 *** 0.085 ** 0.076 *** 

  (6.65) (2.71) (7.52) (1.99) (2.58) 
GRGSQF 0.000 *** 0.000 *** 0.000 0.000 * 0.000 *** 

  (-5.55) (5.35) (-0.30) (1.69) (5.07) 
AGE -0.008 *** -0.007 *** -0.006 *** -0.006 ** -0.004 *** 

  (-15.00) (-5.61) (-6.50) (-2.30) (-2.70) 
AGE2 0.000 *** 0.000 *** 0.000 ** 0.000 *** 0.000 ** 

  (11.07) (3.77) (2.36) (2.59) (2.08) 
AIRCNDD 0.154 *** 0.071 *** 0.080 *** 0.038 0.129 *** 

  (7.31) (3.17) (3.69) (0.79) (4.40) 
DECKD 0.073 *** 0.067 *** 0.091 *** 0.023 0.090 ** 

  (5.27) (2.68) (5.25) (0.49) (2.40) 
FIREPLD 0.094 *** 0.064 *** 0.080 *** 0.132 *** 0.109 *** 

  (10.05) (2.97) (4.81) (3.07) (4.18) 
SDRANK -0.006 *** 0.003 ** -0.008 *** 0.017 ** -0.002 
  (-10.48) (2.21) (-4.63) (2.56) (-0.82) 
LNBEACH -0.047 ** -0.082 *** 0.002 -0.061 ** -0.042 
  (-2.39) (-4.57) (0.19) (-2.07) (-0.48) 
LNFECAL 0.000 -0.039 *** -0.038 *** 0.001 0.013 * 

  (-0.08) (-4.28) (-4.30) (0.04) (1.65) 
LNSECCHI 0.041 *** 0.204 *** 0.026 0.056 0.007 
  (3.10) (6.06) (1.33) (0.59) (0.15) 
lambda 0.302 *** 0.346 *** 0.372 *** 0.358 *** 0.230 *** 

  (13.13)   (9.14)   (13.62)   (6.92)   (3.32)   

  
AdjR2 0.73 0.59 0.82 0.50 0.57 
N 2628   781   1494   280   323   

 
 

Table 6.11. GMM Result for Each Cluster: CBG Case 
 
 
 
 
 



 

146 
 

Table 6.11 (continued) 
 
 
 
  Cluster 
  6 7 8 9 10 
W 400 400 1600 800 800 
                      

CONSTANT 6.150 *** 8.569 *** 7.885 *** 7.610 *** 7.392 *** 

  (22.63) (15.67) (30.27) (31.74) (27.76) 
LNLOTACR 0.058 *** 0.032 0.083 *** 0.152 *** 0.101 *** 

  (6.64) (1.27) (13.07) (9.70) (7.83) 
LNBLDGSF 0.470 *** 0.390 *** 0.423 *** 0.385 *** 0.407 *** 

  (19.89) (8.57) (16.68) (14.32) (18.45) 
BATHN 0.065 *** 0.008 0.039 *** 0.093 *** 0.070 *** 

  (3.98) (0.19) (2.85) (6.74) (6.27) 
GRGSQF 0.000 *** 0.000 ** 0.000 * 0.000 0.000 ** 

  (3.72) (2.37) (-1.94) (1.48) (-2.20) 
AGE -0.005 *** -0.005 ** -0.008 *** -0.008 *** -0.007 *** 

  (-5.42) (-2.54) (-9.45) (-5.95) (-7.46) 
AGE2 0.000 ** 0.000 0.000 *** 0.000 *** 0.000 *** 

  (2.44) (1.62) (5.66) (4.36) (4.43) 
AIRCNDD 0.057 *** 0.090 *** 0.128 *** 0.177 *** 0.102 *** 

  (3.54) (2.80) (4.68) (3.81) (3.89) 
DECKD 0.039 ** 0.059 0.104 *** 0.042 * 0.066 *** 

  (2.04) (1.00) (4.55) (1.90) (3.74) 
FIREPLD 0.098 *** 0.089 ** 0.084 *** 0.079 *** 0.071 *** 

  (6.09) (2.38) (5.99) (5.68) (5.86) 
SDRANK -0.004 ** 0.002 0.001 -0.003 *** 0.003 * 

  (-2.26) (0.44) (0.56) (-3.04) (1.82) 
LNBEACH 0.188 *** -0.460 *** -0.114 *** -0.024 * 0.008 
  (3.35) (-3.23) (-3.44) (-1.80) (0.16) 
LNFECAL 0.051 *** 0.065 -0.003 -0.006 0.008 
  (7.31) (1.05) (-0.30) (-0.76) (0.98) 
LNSECCHI 0.148 *** 0.053 0.055 ** 0.016 0.047 ** 

  (5.94) (0.99) (2.39) (0.68) (2.22) 
lambda 0.250 *** 0.352 *** 0.199 *** 0.370 *** 0.450 *** 

  (7.34)   (5.25)   (5.60)   (10.04)   (12.39)   

  
AdjR2 0.67 0.50 0.61 0.68 0.73 
N 1118   251   1284   1124   1382   
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6.3.3  Estimated Marginal Implicit Prices  
 
     Computed MIPs are listed in Table 6.13.  Compared to the results from the individual 

houses case, we observe that the differences of marginal price for lot acreage, building 

square feet, bathroom, age, air-conditioning and fireplace are less than five percent.  On 

the other hand, school district ranking has the largest difference and mark up to 245 

percent in magnitude.  For the census block group case, if the school district ranking 

increases by one rank, the housing price is suggested to increase by 308 dollars. Marginal 

price for the distance to the beach is 10 percent lower for the census block group case 

where one kilo meter increase in the distance from the closest beach will decrease the 

housing value by 632 dollars.  MIP for fecal coliform is again positive due to the positive 

signed estimates in the GMM estimation. As for the secchi depth readings, an increase in 

the water clarity by one centimeter will increase the housing value by 34 dollars, which is 

about 12 percent higher than the case for individual houses.  

   MIPs by including the expected signed observations (COR data) are also computed and 

listed in Table 6.14 together with MIPs derived by including observations which have 

statistically significant outcome with expected signs (SIG data).  MIP of fecal is derived 

as 18 dollars for one count decrease in fecal coliform counts per 100 ml for the COR data 

while it is 58 dollars for the SIG data. If we compare with the individual houses case 

(21.6 dollars for the COR and 30.5 dollars for the SIG data), it is lower for the COR data 

and is higher for the SIG data. 
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     The same set of results are provided for the secchi variable in Table 6.15.  One 

centimeter increase in the water clarity will increase the value of the house by 34 dollars 

if the houses are affected positively by the secchi readings regardless of the significance. 

It is 43 dollars for the houses significantly influenced by the lake water clarity.  The 

amount estimated is lower than the individual houses case (40.5 dollars for the COR data 

and 56 dollars for the SIG data). 

 

 

 
  MIP for All Data (in 1996$) 
  Mean St.Dev. Min. Max. 
PLOTACR 35.47 36.14 -413.07 838.63 
PBLDGSF 29.17 11.52 4.98 251.10 
PBATHN 8223.38 6635.20 406.30 76797.24 
PGRGSQF -3.58 16.98 -79.78 115.82 
PAGE -529.54 447.04 -3728.63 2839.52 
PAIRCNDD 12638.89 7373.93 1878.70 59671.01 
PDECKD 8142.45 5790.71 1134.65 61195.37 
PFIREPLD 9510.43 5071.53 3199.95 53267.61 
PSDRANK -308.99 729.54 -5474.81 6282.84 
PBEACH -631.85 4077.61 -251114 57555.15 
PFECAL 3.76 76.57 -944.25 1036.81 
PSECCHI 33.93 41.88 1.59 645.14 
ADJINC 15625.97 25216.22 -241102 280592.15 

  10665 
 
 

Table 6.12  Estimated Marginal Implicit Prices for All Data: CBG Case 
 
 
 
 
 
 
 
 



 

149 
 

 
 
  MIP for Fecal COR Data (in 1996$) MIP for Fecal SIG Data (in 1996$) 
  Mean St.Dev. Min. Max. Mean St.Dev. Min. Max. 
PLOTACR 40.1 35.2 0.1 838.6 53.1 47.9 0.1 838.6 
PBLDGSF 30.5 11.9 5.0 251.1 39.2 15.0 7.1 251.1 
PBATHN 9279.9 7505.2 1970.7 76797.2 14846.8 10706.3 3042.9 76797.2 
PGRGSQF -6.4 18.1 -79.8 115.8 6.4 13.4 -8.0 115.8 
PAGE -636.5 468.5 -3728.6 1512.3 -720.7 520.2 -3728.6 1023.5 
PAIRCNDD 15026.7 7352.3 3534.4 59671.0 11444.2 7031.1 3534.4 53550.7 
PDECKD 9618.8 6234.4 2082.6 61195.4 12546.0 8188.4 3350.6 61195.4 
PFIREPLD 10183.3 5339.5 3200.0 53267.6 11139.7 7054.6 3200.0 53267.6 
PSDRANK -515.5 681.2 -5474.8 1858.3 -767.4 1032.9 -5474.8 1858.3 
PBEACH -597.3 1856.1 -75984 57555.2 -461.8 2171.7 -23057 57555.2 
PFECAL -18.0 52.0 -944.3 0.0 -53.6 82.7 -944.3 -0.7 
PSECCHI 32.0 44.5 2.2 645.1 58.3 70.7 3.6 645.1 
ADJINC 14044.0 25468.6 -120485 202278.4 34347.0 29820.6 -120485 202278.4 

  7311 2275 
 
 

Table 6.13 Estimated Marginal Implicit Prices for Fecal COR and Fecal SIG Data:  
CBG Case 

 
 
 
  MIP for Secchi COR Data (in 1996$) MIP for Secchi SIG Data (in 1996$) 
  Mean St.Dev. Min. Max. Mean St.Dev. Min. Max. 
PLOTACR 35.5 36.1 -413.1 838.6 28.6 21.1 0.1 562.7 
PBLDGSF 29.2 11.5 5.0 251.1 27.4 8.2 5.0 184.3 
PBATHN 8223.4 6635.2 406.3 76797.2 6307.8 2839.5 1970.7 35419.4 
PGRGSQF -3.6 17.0 -79.8 115.8 -8.7 17.5 -79.8 115.8 
PAGE -529.5 447.0 -3728.6 2839.5 -545.0 402.7 -3127.5 1512.3 
PAIRCNDD 12638.9 7373.9 1878.7 59671.0 12650.0 7446.7 2837.7 59671.0 
PDECKD 8142.4 5790.7 1134.7 61195.4 7750.5 4254.6 1959.8 48523.4 
PFIREPLD 9510.4 5071.5 3200.0 53267.6 9082.2 4193.8 3200.0 49622.9 
PSDRANK -309.0 729.5 -5474.8 6282.8 -207.5 476.4 -2274.5 1858.3 
PBEACH -631.9 4077.6 -251114 57555.2 -352.1 1124.2 -23057.7 5777.8 
PFECAL 3.8 76.6 -944.3 1036.8 9.6 87.2 -944.3 1036.8 
PSECCHI 33.9 41.9 1.6 645.1 43.0 47.6 5.2 645.1 
ADJINC 15626.0 25216.2 -241102 280592.2 12043.0 18513.9 -115500 202278.4 

  10665 7193 
 
 

Table 6.14  Estimated Marginal Implicit Prices for Secchi COR and Secchi SIG Data: 
CBG Case 
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6.4  Conclusion 
 
 

     The first stage of hedonic price estimation is conducted in this chapter and the 

marginal implicit prices are computed based on the estimated results for each observation 

for both the individual houses and the census block group cases. Estimated results are 

mixed for fecal coliform. In six clusters, the fecal coefficients are estimated with negative 

signs for the case of individual houses while it is negative for five clusters for the census 

block group case. As for the secchi readings, most of the clusters are estimated with the 

expected sign. Average MIPs are computed for three types of data set. The first set 

includes all 10655 observations. The second set consists of the houses whose sales prices 

are affected negatively (positively) by fecal (secchi) regardless of the significance (COR 

Data).  the third set is composed of the houses whose sales prices are negative (positive) 

and significantly influenced by fecal (secchi) (SIG Data). 

   Computed MIPs are -21.6 dollars for fecal with the COR data and -30.5 dollars for the 

SIG data, indicating a marginal increase in the fecal coliform will decrease the housing 

price by 21.6 dollars for houses in the COR data and by 30.5 dollars in the SIG data. As 

for water clarity, we found that an increase in the water clarity will increase the housing 

price by 40.5 dollars for the COR data and 56 dollars for the SIG data in the case of 

individual house. Computed MIPs for the case of census block group is -18 dollars for 

fecal COR data and -53.6 dollars for fecal SIG data. They are 33.9 dollars for secchi 

COR data and 43 dollars for secchi SIG data.  The differences arise from the different 

definitions of cluster boundaries. 
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CHAPTER 7 
 

THE SECOND STAGE OF THE HEDONIC STUDY  
ON LAKE ERIE WATER QUALITY 

 
 
 
 

7.1 The Model 
 
     In the second stage of hedonic price analysis, demand for water quality is estimated by 

using fecal and secchi variable. Clusters determined in the cluster analysis and following 

merging based on chow test are considered forming housing submarket in the region. 

Therefore, we have ten submarkets for both individual houses and CBG case. Marginal 

implicit prices (MIP) estimated and identified submarkets are used to estimate demand 

functions for both water quality measurements.   

     The structure of the model is 

WQ f P Q, , ,  

where WQ is quantity of water quality variable (fecal or secchi),  P Q, is marginal price 

of water quality measurements (fecal or secchi), , is a price vector of substitutes to 

water quality,  is a price vector of complements to water quality, and Z is a vector of 

demographic characteristics.  The  model specification used for estimation is as follows. 
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    The own price of water quality is expected to have negative relationship with quantity 

consumed. Variables of complement to water quality are expected to have negative signs 

while it is positive for substitutes.  Because water quality variables are included in the 

first stage hedonic price function by taking logarithm, the MIPs of water quality are 

endogenous in the consumer’s choice problem due to the fact that the price of water 

quality a house owner will face is a function of the quantity of the water quality they 

choose to consume.  Therefore, in the demand function estimation in the second stage, we 

employ two-stage least squares (2SLS) estimation method in order to handle this 

endogeneity.   

     Because the water quality prices are nonlinear, we have to linearize the budget 

constraint around the chosen consumption bundle (Palmquist (1988), Boyle, Poor and 

Taylor (1999), Taylor (2000)).  Adjusted income is derived as   where 
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Y is household income, SP is sales price of a house and HP is the hedonic price of a 

house computed with estimated MIPs and the actual consumption bundle of housing 

features. In our case, HP is equal to  

 

Where s are MIPs estimated and it is multiplied by the relevant quantity of the variable 

home owner  consumes. 

     Instrumental variables are listed as follows. 

• Submarket dummy variables 

• Demographic variables including adjusted income 

• Interaction terms of submarket dummies and demographic variables 

• Marginal implicit prices included in the demand estimation model 

 
7.2  Data 
 
     In addition to marginal implicit prices derived from the first stage of the estimation 

and adjusted income specified in the previous section, we include demographic variables 

adopted from census block group level census data.  Demand function for environmental 

variable includes age and education (Beron et.al (2003)) as the demand shifter (Taylor 

(2003)). In addition to these two factors, we also include race and marital status factors in 
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our model as in Palmquist (1984). Four variables are 1. percentage of population with 

bachelor’s degree, 2. percentage of kids population age 0 to 17, 3. percentage of black 

population and 4. percentage of single population within a census block group.   

      
 
7.3  Estimated Results: Individual Houses Case 
 
     Three forms of demand function (linear, semi log and log log) are estimated for three 

set of data as specified in previous chapter.  Since fecal coliform count is a “bad”, not a 

“good”,  the expected sign of its own price is negative. In order to estimate non-linear 

demand function, we multiply MIP of fecal by minus one. In equation, this 

transformation is expressed as 

 

1           0  

2          ,   . 

 

     We estimate equation (2) and its estimated coefficient is   which is expected to be 

positive.  This transformation does not affect the magnitudes or signs of other 

coefficients. We take logarithm of P* for semi log model and both Q and P* for log log 

model. The semi log model is estimated as    (where   is the 

estimated coefficient), and the form is retransformed back to original definition of  and 

P for the derivation of the inverse demand function as follows. 
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                exp     exp  

  

    The same kind of transformation is done for log log specification as shown below. 

  

                exp     exp   

 

7.3.1 Two Stage Least Squares Result 
 
     In this section, the estimated demand functions for two water quality variables (fecal 

and secchi) and three data set (all, COR and SIG) estimated with three functional forms 

(linear, semi log and log log) are reported.  Two stage least squares (2SLS) and Non-

linear 2SLS (N2SLS) are conducted by using SAS program.  In order to determine which 

functional form is the best fit to our data, we first plot the water quality variables (fecal 

and secchi) against their marginal implicit prices. The figures are shown from Figure 7.1 

through 7.6.  In these figures, the figure in upper left corner is the histogram of MIP and 

the one in the lower right corner is the histogram of quantity of water quality. Upper right 

corner figure is the one plotting quantity (x) against MIP (y). 

 

     Although it is difficult to say the shape of the function from Figure 7.1 since MIP of 

fecal include both positive and negative values, the figure implies that the relationship 

between quantity and the price is non-linear.  Figure 7.2 also shows that the quantity of 

secchi and its MIP are non-linear. 
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Figure 7.1.  Quantity and MIP of Fecal Coliform Counts, All Data: IH Case. 
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Figure 7.2.  Quantity and MIP of Secchi Depth Readings, All Data: IH Case. 

 

    Given these observations, we are going to estimate semi log and log log demand 

equation for COR and SIG data although we cannot do so for ALL data due to negative 

MIPs.  For COR and SIG data for fecal coliform as Figure 7.3 and 7.4 indicate, either 

semi log or log log function looks more appropriate functional form than linear function. 

Non-linear relationship is also observed clearly for secchi depth case for all types of data. 

Although we estimate linear specification for comparison reason, the figures imply that 

non-linear (semi log or log log) equations are more appropriate for our data. 
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Figure 7.3. Quantity and MIP for Fecal Coliform Counts, COR Data: IH Case 

 

Figure 7.4. Quantity and MIP for Fecal Coliform Counts, SIG Data: IH Case 
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    Figure 7.5. Quantity and MIP for Secchi Depth Readings, COR Data: IH Case Figure 

             

Figure 7.6. Quantity and MIP for Secchi Depth Readings, SIG Data: IH Case 



 

160 
 

 

     We first estimate linear model with all data for both fecal and secchi cases. Marginal 

implicit price (MIP) of fecal is expected to be negative for the fecal demand equation as 

its own price. Since fecal coliform is a “bad”, the influence of other prices on the demand 

for fecal is considered as follows. Note that the quantity demanded is expressed with 

lower case, q and demand is in upper case, Q. 

     
       

 

where  is the price of goods o,  is the quantity demanded for goods o, and  is 

the demand for fecal.  An increase in the price of normal goods will decrease the quantity 

demanded of the good, and it will increase the demand for fecal if they are complements 

and it will decrease fecal if they are substitutes.  Therefore, the estimated sign of 

complements is positive while it is negative for substitutes.   

     As for secchi demand equation, substitutes will have positive signs and complements 

will have negative signs as shown below. 

        
    

        
    

 

It is because an increase in the price of good decrease the quantity demanded of the good 

and it will then increase the demand for secchi if they are substitute and decrease the 

demand if they are complements. It is same for MIP for bads since an increase in the 
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price of reducing a bad will increase the quantity demanded of the bad, and if it has 

substitutes relationship with secchi, the sign will be positive while it is negative if 

complements. 

     The sign for MIP of secchi will be positive if it is a complement to fecal and it is 

negative if it is a substitute. If water clarity is considered to be a complement to fecal 

coliform counts, the sign will be negative and if it is a substitute, the sign will be positive.  

     We expect percentage of bachelor’s degree to be negative for fecal and positive for 

secchi, percentage of children between 0 and 17 to be negative for fecal and positive for 

secchi, percentage of black to be positive for fecal and negative for secchi, adjusted 

income to be negative for fecal and positive for secchi. There is no a priori expectation 

for the signs for the percentage of single variable.  The estimated results of 2SLS is 

shown in Table 7.1 for both fecal and secchi outcome for linear model by using all data.   

     The own price of fecal coliform is estimated as positive. This is mainly because 

estimated marginal implicit price for fecal includes both positive and negative values.  

Secchi depth reading is estimated as substitute for fecal coliform while distance to the 

closest beach is not statistically different from zero.  Demographic variables (percentage 

of children under 18, percentage of black population, and adjusted income) also have 

opposite signs from the existing studies have suggested.  Our results indicate that the 

higher the percentage of children, the higher the demand for fecal coliform on the 

beaches, and the higher the rate of the black population, the lower the demand for fecal 

coliform counts.  The adjusted income is estimated as positive and significant, implying 

that the higher the adjusted income of the household is, the higher the demand for fecal 
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coliform is. Although these are unexpected results, the positive influence of percentage of 

children under 17 and the negative effect of percentage of black population are consistent 

outcome throughout all model specifications and data types.  

    As for secchi case with all data, we found negative own price effect on the quantity 

demanded, and fecal coliform is a substitute of waster clarity as we found in fecal 

demand estimation. The distance to the beach is not estimated as significantly influencing 

the demand in this case.  PCTBACH, PCTSINGLE and ADJINC have positive 

relationship with the demand for water clarity, while we found that PCTBLACK is 

negatively related with the demand for water clarity.  As oppose to the results from the 

fecal demand equation, these are expected outcomes. PCT0_17 is not statistically 

significant in this case. 

     The estimated results for fecal with COR data and all three functional forms are 

shown in Table 7.2.  The own price of fecal multiplied by minus one is estimated 

negative for linear model while it is positive for non-linear models.  Since we excluded 

observations with positive MIP of fecal when we formed COR data set, this positive and 

significant outcomes are somewhat surprising. If we consider this outcome with the 

results from the first stage estimation, it is possible to conclude that the influence of the 

possible omitted variable which is related to fecal coliform variable persist both all and 

COR observations. The distance to the closest beach is not statistically significant for all 

three specifications. Water clarity is revealed to be a substitute to fecal coliform and this 

result is consistent for all specifications for COR data. We found that PCT0_17 is 

positive significant for all functional forms while PCTBLACK is negative significant. 
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Adjusted income does not have significant influence on the fecal quantity demanded in 

all specifications.  The results for SIG data set is listed in Table 7.3. For this set of data, 

the own price of fecal is all negative for all specifications as we expect.  PSECCHI is not 

significant for the linear and semi log form while it is negative significant for the log log 

functional form indicating that water clarity is a substitute to fecal variable as we 

observed in all and COR data outcomes.  The distance to the beach is not significant for 

any case.  PCT0_17 and PCTSINGLE are positively influencing the fecal demand while 

PCTBLACK is negatively affecting the demand. ADJINC is not significant for linear and 

semi log models while it is negative and significantly for log log specification.  By 

excluding the insignificant results from the observations from the first stage estimation, 

we pick up the “bad” aspect of fecal coliform on the beaches for this set of data more 

explicitly. 
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Fecal   Secchi 
All All 

  Linear       Linear   

CONSTANT 157.53 *** CONSTANT 194.99 *** 

(5.86) (29.15) 
PFECAL* 0.80 *** PSECCHI -0.33 *** 

(13.24) (-18.32) 
PLOTACR -0.55 *** PLOTACR 0.04 

(-5.61) (1.54) 
PBATH 0.002 *** PBATH -0.0001 

(2.93) (-0.23) 
PDECK -0.004 *** PDECK 0.002 *** 

(-5.45) (11.71) 
PBEACH 0.0001 PBEACH -0.00001 

(0.39) (-0.21) 
PSECCHI -0.50 *** PFECAL 0.03 *** 

(-7.81) (3.43) 
PCTBACH 0.30 PCTBACH 0.52 *** 

(0.41) (2.89) 
PCT0_17 5.29 *** PCT0_17 -0.01 

(7.61) (-0.04) 
PCTBLACK -3.22 *** PCTBLACK -0.21 ** 

(-8.01) (-2.07) 
PCTSINGLE 1.15 PCTSINGLE 0.92 *** 

(1.44) (4.63) 
ADJINC 0.0007 *** ADJINC 0.00010 *** 

  (4.98)       (2.99)   

AdjR2 0.03 0.11 
N 10655.00       10655.00   

 
 
 

Table 7.1. 2SLS Estimated Result for Fecal and Secchi with All Data:  
Individual Houses Case 
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  Fecal 
COR 

  Linear   Semilog   Loglog   

CONSTANT -13.77 -10.61 4.04 *** 

(-0.30) (-0.21) (26.90) 
PFECAL* -1.49 *** 21.92 *** 0.04 ** 

(-5.70) (5.48) (2.95) 
PLOTACR 0.06 0.02 0.001 *** 

(0.56) (0.20) (2.74) 
PBATH 0.004 *** -0.01 *** -0.00001 *** 

(3.64) (-3.94) (-2.73) 
PDECK 0.003 ** 0.01 *** 0.00002 *** 

(2.34) (3.65) (3.65) 
PBEACH 0.0001 -0.0001 -0.000001 

(0.41) (-0.64) (-1.41) 
PSECCHI -0.47 *** -0.57 *** -0.01 *** 

(-6.29) (-6.98) (-25.51) 
PCTBACH -0.09 -2.50 ** 0.003 

(-0.10) (-2.39) (-0.84) 
PCT0_17 9.51 *** 8.21 *** 0.03 *** 

(10.86) (8.35) (10.61) 
PCTBLACK -5.61 *** -6.60 *** -0.02 *** 

(-9.31) (-10.12) (-12.35) 
PCTSINGLE 1.68 5.83 *** 0.03 *** 

(0.83) (2.64) (4.16) 
ADJINC 0.0003 0.0002 -0.000001 
  (1.54)   (0.69)   (-0.76)   

AdjR2 0.13 -0.02 0.17 
N 5328.00   5328.00   5328.00   

 
 

Table 7.2. 2SLS Estimated Result for Fecal with COR Data: Individual Houses Case 
 
 
 
 
 
 
 
 
 
 
 
 



 

166 
 

 
  Fecal 

SIG 
  Linear   Semilog   Loglog   

CONSTANT -31.13 342.11 *** 5.06 *** 

(-0.38) (3.96) (25.82) 
PFECAL* -2.72 *** -143.16 *** -0.48 *** 

(-9.40) (-8.60) (-12.79) 
PLOTACR -0.06 -0.14 0.001 *** 

(-0.40) (-1.23) (3.08) 
PBATH -0.030 *** -0.03 *** -0.00006 *** 

(-8.07) (-10.90) (-9.24) 
PDECK 0.042 *** 0.04 *** 0.00011 *** 

(10.71) (13.25) (14.10) 
PBEACH -0.0001 0.00003 0.0000002 

(-0.35) (0.18) (-0.46) 
PSECCHI 0.09 0.12 -0.005 *** 

(0.78) (1.35) (-22.61) 
PCTBACH -4.31 *** 2.23 ** 0.01 *** 

(-3.70) (2.04) (5.97) 
PCT0_17 8.72 *** 6.93 *** 0.03 *** 

(5.70) (5.33) (9.60) 
PCTBLACK -10.03 *** -6.59 *** -0.02 *** 

(-10.63) (-7.21) (-11.20) 
PCTSINGLE 10.25 *** 5.35 ** 0.02 *** 

(3.25) (1.97) (3.97) 
ADJINC 0.0004 0.0001 -0.000001 ** 

  (1.56)   (0.54)   (-2.00)   

AdjR2 0.19 0.49 0.74 
N 3555.00   3555.00   3555.00   

 
 
 
 
 
 

Table 7.3. 2SLS Estimated Result for Fecal with SIG Data: Individual Houses Case 
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     Estimated two stage least square results for secchi disk depth readings for COR and 

SIG data set are listed in Figure 7.4 and 7.5, respectively.  Unlike fecal demand case, the 

estimated results are fairly consistent throughout COR and SIG data set and different 

functional forms, except for adjusted income. Own prices are estimated negative and 

significant for all cases. As in the case with fecal, fecal coliform is estimated as a 

substitute for water clarity.  The distance to the beach variables are not significant for any 

case.  As for the demographic variables, PCTBACH, PCT0_17, PCTSINGLE have 

positive significant impacts on the demand for water clarity while it is negative 

significant for PCTBLACK for all specifications and data sets. This indicates that the 

households with the higher education level, with more children and/or who are single 

have higher demand for water clarity. 

     The only difference in the direction of the influence in demand between COR and SIG 

data is the signs for the adjusted income. The expected sign of ADJINC is positive in 

water clarity case as we can observe in COR data set. However, it is negative and 

significant for linear and log log specification for SIG data while it is not significant for 

semi log form.  As we described earlier, the adjusted income variable is composed of 

median household income, discounted housing sales price, the estimated marginal 

implicit prices for other variables included in the first stage hedonic price estimation and 

their corresponding quantities consumed. Among the five clusters included in SIG data 

set, four of them have below the overall average median household income and three of 

them have below the average discounted house sales price.  



 

168 
 

     Therefore, on average, median household income and the house sale price for SIG 

data are below the entire average of each variable.  Therefore, it may possible to state that 

this result may be due to the differences in income structures for the observations 

included in each data set. 

 

  Secchi 
COR 

  Linear   Semilog   Loglog   

CONSTANT 173.09 *** 219.73 *** 5.37 *** 

(25.56) (31.31) (178.94) 
PSECCHI -0.69 *** -22.81 *** -0.11 *** 

(-33.44) (-29.41) (-33.41) 
PLOTACR -0.06 ** -0.13 *** -0.001 *** 

(-2.41) (-4.95) (-4.74) 
PBATH 0.004 *** 0.00 *** 0.00001 *** 

(16.31) (6.60) (7.02) 
PDECK 0.003 *** 0.00 *** 0.00002 *** 

(16.36) (20.34) (22.65) 
PBEACH 0.0000 0.0000 0.000000 

(-0.22) (-0.07) (-0.32) 
PFECAL 0.11 *** 0.08 *** 0.00 *** 

(11.63) (9.18) (11.57) 
PCTBACH 1.39 *** 1.29 *** 0.01 *** 

(6.94) (6.42) (6.30) 
PCT0_17 0.38 ** 0.69 *** 0.00 *** 

(2.20) (3.91) (3.28) 
PCTBLACK -0.15 -0.31 *** 0.00 *** 

(-1.64) (-3.44) (-3.72) 
PCTSINGLE 0.60 *** 0.79 *** 0.00 *** 

(3.31) (4.34) (4.87) 
ADJINC 0.0002 *** 0.0003 *** 0.000001 *** 

  (4.30)   (7.05)   (7.34)   

AdjR2 0.25 0.25 0.29 
N 8754.00   8754.00   8754.00   

 

 
Table 7.4. 2SLS Estimated Result for Secchi with COR Data: Individual Houses Case 
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  Secchi 

SIG 
  Linear   Semilog   Loglog   

CONSTANT 170.81 *** 291.15 *** 5.73 *** 

(21.82) (33.87) (154.47) 
PSECCHI -0.94 *** -47.48 *** -0.24 *** 

(-32.78) (-32.26) (-37.71) 
PLOTACR -0.03 -0.14 *** -0.001 *** 

(-1.01) (-5.13) (-5.47) 
PBATH 0.008 *** 0.01 *** 0.00003 *** 

(20.71) (17.85) (21.50) 
PDECK 0.000 0.00 *** 0.00000 

(1.32) (2.59) (1.21) 
PBEACH 0.0000 0.0000 0.000000 

(0.39) (0.57) (0.49) 
PFECAL 0.14 *** 0.13 *** 0.00 *** 

(16.91) (16.21) (19.54) 
PCTBACH 1.06 *** 1.22 *** 0.01 *** 

(4.88) (5.86) (6.04) 
PCT0_17 0.50 ** 0.95 *** 0.00 *** 

(2.38) (4.68) (4.89) 
PCTBLACK -0.12 -0.32 *** 0.00 *** 

(-1.28) (-3.63) (-4.67) 
PCTSINGLE 0.67 *** 1.06 *** 0.01 *** 

(3.92) (6.45) (7.63) 
ADJINC -0.0001 ** 0.0000 0.000000 * 

  (-2.47)   (-0.37)   (-1.86)   

AdjR2 0.40 0.45 0.51 
N 5796.00   5796.00   5796.00   

 
 

Table 7.5  2SLS Estimated Result for Secchi with SIG Data: Individual Houses Case 
 
 
7.3.2  Estimated Demand Function: Individual Houses Case 
 
     Given the estimated results from two stage least squares discussed in the previous 

section, we computed demand functions for each functional form and data set.  The 

demand functions for fecal is reported without retransforming the price. The functions for 

each type can be found in Table 7.6.  Demand functions for Fecal have negative slopes 
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for [COR, Linear] and all functional forms for SIG case.  Considering that fecal is a 

“bad” and its price has been transformed, negative slope is the expected sign.  On the 

other hand, [ALL, Linear] and [COR, Semi log and Log log] cases have positive slopes. 

As for [All, Linear] case, we assume that the influence of positive MIP for fecal caused 

this outcome.  For the case of non-linear specifications for COR data, we suspect that the 

possible omitted variable is causing this sign reversal. Therefore, we do not consider the 

results for COR is credible outcome.  

     The price elasticity of demand is -0.52 for [SIG, Semi log] case if we compute it with 

mean fecal coliform value for SIG case, and -0.48 for [SIG, Log log] case. Therefore, the 

price elasticity of demand is relatively inelastic for both cases and the output from Log 

log form has lower elasticity. 

     The inverse demand functions estimated for fecal coliform are plotted in Figure 7.7 

for the linear function for all data, Figure 7.8 for the linear functions from COR data and 

Figure 7.9 for the semi log functions for COR data, Figure 7.10 for log log function for 

COR data, Figure 7.11 for the linear function for SIG data and Figure 7.12 for non-linear 

functions for SIG data. Based on the functions listed in Table 7.6, we retransformed the 

price of the fecal variable as shown earlier and plotted with the original negative prices.  

Therefore, most of the fecal demand functions are located in the fourth quadrant.  The 

expected shape of inverse demand function for fecal (a bad) is  the one as shown in the 

case [SIG, Semi log and Log log] because at the condition with high fecal coliform, the 

willingness to pay for the one unit reduction of fecal is higher than the case with the 

lower initial fecal coliform amount. 
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Figure 7.8. Linear Demand Functions for Fecal, COR  Data: IH Case 
 
 

 
 

Figure 7.9. Semi log Demand Functions for Fecal, COR  Data: IH Case 
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Figure 7.10. Log log Demand Functions for Fecal, COR  Data: IH Case 
 
 

 
 

Figure 7.11. Linear Demand Functions for Fecal, SIG  Data: IH Case 
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Figure 7.12. Non-linear Demand Functions for Fecal, SIG Data: IH Case 

 
 
 

     The derived inverse demand function for secchi is also listed in Table 7.6. The price 

elasticity of demand is -0.10 for [COR, Semi log] case by using the secchi quantity as the 

average for COR data set, 222 cm while it is -0.11 for [COR, Log log] case. Therefore, 

derived demand functions indicate very inelastic situation.  As for the outcome from SIG 

data set, the price elasticity of demand computed as -0.22 for the semi log case by using 

216 cm as the mean secchi value for this data set, and -0.24 for the log log form.  If we 

compare these with the COR data case, they are less inelastic although these are still very 

inelastic.  
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Figure 7.14. Demand Functions for Secchi, COR Data: IH Case 
 

 
 

Figure 7.15. Demand Function for Secchi, SIG Data: IH Case 
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7.3.3 Computed Welfare Change: Individual Houses Case 
 
     In this section of the second stage analysis, we are finally able to derive the welfare 

changes due to non-marginal changes in the water quality variables. As for fecal 

coliform, we need to retransform the price and its estimated slope coefficients as 

described in the beginning of section 7.3. By using the retransformed variables, we 

computed the welfare changes for the changes of the fecal coliform variables to eight 

different values, four are intending to show the influence for the improvement or the 

reduction in fecal coliform and the other four is for the degradation or the increase in the 

counts from the fecal coliform variables’ overall mean value, 255 counts per 100 ml. 

     Although we reported the computed welfare changes for all cases, the computed 

results for [All, Linear], [COR, Semi log] and [COR, Log log] are based on unreasonable 

estimated results and difficult to interpret in this setting.  We expect the welfare changes 

to be expressed as negative values since we are handling households’ willingness to pay 

for the reduction of the water quality variable (fecal coliform). Therefore, the [SIG, 

Linear] case is also not appropriate since the most of the function exist in the first quintile 

although the slope of the function is negative. The shape of the demand functions 

estimated for [SIG, nonlinear] cases suggest that welfare changes due to degradation are 

larger than the changes from improvement for the same amount of the change in quantity, 

but in different directions.   We found that house owners are willing to pay for 20 dollars 

for the reduction of fecal coliform by 25 counts per 100 ml while it is 24 dollars for the 

increase in fecal coliform by 25 counts per 100 ml. For the reduction of 150 counts, it is 

68 dollars while for the same amount increase in fecal, the welfare change calculated is 
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230 dollars. Our findings indicate that the fecal coliform counts itself changes the 

household’s welfare by very small amount.   

     We turn to the discussion for the results of secchi disk depth readings.  First of all, 

because the linear demand functions estimated for all three data set intersect with x axis 

at around the mean value of secchi variable for each case, the computed welfare measures 

for the increase in water clarity is estimated as negative. Although it is possible to 

consider that too high water clarity may cause home owners to have negative willingness 

to pay because too high water clarity may mean that the lake is experiencing the high 

level of acidity and the number of fishes living there has been decreasing. However,  as 

we observed the non-linear relationship between the price and the secchi quantity, we 

place more credibility on the results from non-linear cases. The amount of welfare 

changes are larger for the houses whose sales prices are influenced significantly by water 

clarity compared to the COR case. This is expected because we consider the households 

whose housing values reflect water clarity of the Lake more significantly will have the 

higher willingness to pay for the water clarity.  Their differences are around six to ten 

times. 

     The increase in water clarity from 220 cm to 245, 270, 320 and 370 cm will increase 

the welfare between 8 to 17 dollars for COR case while its decrease causes very dramatic 

changes in the welfare due to the shape of the demand function estimated. The change for 

the water clarity reduction below 120 cm has very high changes in welfare especially for 

Log log case.  
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     As for SIG case, we found that 25 cm changes in water clarity will change the home 

owner’s welfare by 63 dollars and its increase to 176 dollars for the increase by 150 cm. 

On the other hand, the welfare loss for the decrease in water clarity by 25 cm is 101 

dollars while it is 276, 1272 and 8031 dollars for the change by 50, 100 and 150 cm, 

respectively. Since the Lake water quality is a public good, these welfare change 

computed is for a house included into the data set.  If we want to know the total benefits 

or damages from water quality changes, we multiply the value we found by the relevant 

population. For example, if we take the results for SIG data, we multiply the estimated 

welfare change by the number of houses significantly affected by the water quality in 

these four counties. 

      

        New Fecal Level (From 255 counts /100 ml) 
        Improvement Degradation 
      N 230 205 155 105 280 305 355 405 

Fecal 

All Linear 10655 11600 22417 41700 57850 12383 25550 54233 86050 
COR Linear 5328 -1528 -2635 -3588 -2858 -1948 -4317 -10316 -17998 
SIG Linear 3555 466 1163 3245 6246 237 243 -432 -2028 
COR Semilog 5328 -0.1 -0.6 -6.5 -64.3 0.0 -0.1 -0.1 -0.1 
SIG Semilog 3555 -2.2 -4.1 -7.0 -9.0 -2.6 -5.8 -14.0 -25.7 
COR Loglog 5328 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SIG Loglog 3555 -19.8 -35.7 -57.2 -68.3 -24.3 -53.6 -128.8 -229.6 

 

 

Table 7.7.  Computed Welfare Change for Fecal (in $ 1996) : Individual Houses Case 
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        New Secchi Level (From 220 cm) 
        Improvement Degradation 
      N 245 270 320 370 195 170 120 70 

Secchi 

All Linear 10655 1012 120 -7377 -22491 2916 7736 23088 46057 
COR Linear 8754 -1439 -3777 -11152 -22126 -539 -179 3241 10259 
SIG Linear 5796 -477 -1621 -5911 -12869 191 1048 4766 11152 
COR Semilog 8754 8 10 11 11 23 91 904 8188 
SIG Semilog 5796 61 97 130 142 103 277 1070 3343 
COR Loglog 8754 10 14 16 17 28 117 2163 164370 
SIG Loglog 5796 63 104 151 176 101 276 1272 8031 

 
 
 

Table 7.8.  Computed Welfare Change for Secchi (in $ 1996) : Individual Houses Case 
 
 
 
 
7.4  Estimated Results: Census Block Group Case 
 
  
     In this section, we report the second stage estimation by using the clustering results 

with census block group.  As in the individual houses case, we start by plotting the water 

quality variables against their marginal implicit prices derived from the first stage of the 

estimation.  Both for the fecal and the secchi cases, the plots suggest non-linear 

relationship between the prices and the quantities.  As for secchi case, COR data 

coincides with All data indicating all the houses in our sample is affect positively by 

water clarity although the influence may not be significant. 
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Figure 7.16.  Quantity and MIP for Fecal Coliform Counts, All Data: CBG Case 
 

 
Figure 7.17. Quantity and MIP for Fecal Coliform Counts, All Data: CBG Case 
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Figure 7.18. Quantity and MIP for Fecal Coliform Counts, COR Data: CBG Case 
 
 

 
Figure 7.19. Quantity and MIP for Fecal Coliform Counts, SIG Data: CBG Case 
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Figure 7.20. Quantity and MIP for Secchi Depth Readings, SIG Data: CBG Case 
 
 
7.4.1 Two Stage Least Squares Result 
 
     The estimated outcomes are listed in Table 7.9 though 7.13. Own prices of water 

quality are estimated as negative and significant in all cases except for fecal with all data 

and semi log specification with COR data.  The distance to the closest beach is revealed 

to be a complement to fecal coliform level for all and COR data cases while the effect is 

not significant for SIG case. Water clarity level is estimated as a substituted for all, 

[COR, Semi log] and [COR, Log log] case and it is a complement for [COR, Linear], 

[SIG, Semi log] and [SIG, Log log] case. However, considering the very low level of 

adjusted R-squares for ALL and COR models (< 0.10), we would like to focus on the 

results for the SIG data case.  
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     PCTBACH, PCT0_17 and PCTSINGLE are estimated as positive significant while it 

is negative significant for PCTBLACK case in most of the specifications. These 

unexpected results coincide with the one from individual houses case.  Adjusted income 

is estimated as positive significant for all and COR cases while it is positive significant 

for [SIG, Log log] case.   

     As for the results from secchi demand estimation, we found that in all cases the own 

price is estimated as negative and statistically significant.   The distance to the closest 

beach is not statistically significant for all or COR data case, but it is negative and 

significant for SIG dataset indicating that the proximity to the beach is a complement to 

water clarity. Fecal variable is estimated as positive and significant for most of the cases, 

indicating that the level of fecal coliform is a substitute to water clarity as we found in the 

case of individual houses.  

     PCTBACH is estimated as positive and significant in all cases, implying that the 

higher educated home owners demand more water clarity. Interestingly, PCT0_17 is not 

significant for any of the specifications. PCTBLACK has negative significant outcome 

for COR data while it is positive and significant for SIG data.  As oppose to the case with 

individual houses, the direction of the influence toward water quality is not consistent 

across different settings and models in the case of census block group.  While 

PCTSINGLE is estimated as positive and significant for most of the cases, ADJINC is 

positive significant for the [All, Linear] and [COR, Linear] case and not significant for 

rest of the cases. 

 



 

185 
 

 
 
 

Fecal   Secchi 
ALL ALL 

  Linear       Linear   

CONSTANT 140.71 *** CONSTANT 201.91 *** 

(5.24) (30.77) 
PFECAL* 0.75 *** PSECCHI -0.38 *** 

(13.25) (-19.39) 
PLOTACR -0.14 PLOTACR 0.04 ** 

(-1.52) (2.05) 
PBATH 0.001 PBATH -0.001 *** 

(0.71) (-3.44) 
PDECK 0.0003 PDECK 0.003 *** 

(0.32) (13.22) 
PBEACH 0.004 *** PBEACH 0.0002 

(5.21) (1.10) 
PSECCHI -0.98 *** PFECAL -0.0001 

(-14.37) (-0.01) 
PCTBACH -0.20 PCTBACH 0.71 *** 

(-0.27) (3.97) 
PCT0_17 5.16 *** PCT0_17 -0.18 

(7.20) (-1.02) 
PCTBLACK -3.13 *** PCTBLACK -0.14 

(-7.68) (-1.45) 
PCTSINGLE 1.60 ** PCTSINGLE 0.63 *** 

(2.00) (3.22) 
ADJINC 0.0005 *** ADJINC 0.0001 * 

  (3.08)       (1.69)   

AdjR2 0.03 0.14 
N 10655     10655     

 
 

Table 7.9. 2SLS Estimated Result for Fecal and Secchi with All Data: CBG Case 
 
 
 
 
 
 
 
 
 



 

186 
 

 
 
 
 

Fecal 
COR 

  Linear   Semilog   Loglog   

CONSTANT -122.24 *** -180.80 *** 3.66 *** 

(-2.90) (-4.02) (26.68) 
PFECAL* -0.93 *** 9.66 *** -0.02 *** 

(-4.44) (4.00) (-2.92) 
PLOTACR -0.22 * -0.44 *** -0.0010 *** 

(-1.90) (-3.78) (-2.90) 
PBATH 0.008 *** 0.006 *** 0.000020 *** 

(7.18) (5.15) (6.02) 
PDECK -0.007 *** -0.006 *** -0.00001 * 

(-6.45) (-5.13) (-1.91) 
PBEACH 0.00 ** 0.005 *** 0.00002 *** 

(2.21) (2.90) (4.06) 
PSECCHI 0.35 ** -0.46 *** -0.004 *** 

(2.17) (-5.03) (-14.81) 
PCTBACH 1.82 ** 0.83 0.01 ** 

(2.09) (0.94) (2.20) 
PCT0_17 7.75 *** 8.68 *** 0.030 *** 

(9.43) (10.06) (11.38) 
PCTBLACK -7.61 *** -8.80 *** -0.022 *** 

(-10.57) (-11.41) (-9.54) 
PCTSINGLE 11.54 *** 15.48 *** 0.048 *** 

(6.64) (8.36) (8.51) 
ADJINC 0.0003 * 0.0001 0.0000017 *** 

  (1.74)   (0.76)   (3.03)   

AdjR2 0.08 -0.001 0.15 
N 7311   7311   7311   

 
 

Table 7.10. 2SLS Estimated Result for Fecal with COR Data: CBG Case 
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Fecal 
SIG 

  Linear   Semilog   Loglog   

CONSTANT 
-

320.06 ** 553.98 *** 7.84 *** 

(-2.10) (3.88) (65.07) 
PFECAL* -2.31 *** -212.96 *** -1.12 *** 

(-5.20) (-11.62) (-72.35) 
PLOTACR 0.04 -0.03 -0.0001 

(0.21) (-0.20) (-0.83) 
PBATH -0.047 *** -0.014 -0.000100 *** 

(-3.28) (-1.52) (-12.58) 
PDECK 0.062 *** 0.027 ** 0.00019 *** 

(3.34) (2.32) (19.33) 
PBEACH 0.00 0.000 0.00000 

(-0.63) (0.06) (-0.91) 
PSECCHI -0.18 0.55 *** 0.001 *** 

(-0.64) (2.58) (4.36) 
PCTBACH 4.31 ** -0.82 0.01 *** 

(2.33) (-0.65) (10.15) 
PCT0_17 7.82 *** 3.36 * 0.005 *** 

(2.92) (1.75) (3.20) 
PCTBLACK -23.46 *** -10.75 *** 0.005 *** 

(-8.13) (-4.95) (2.91) 
PCTSINGLE 29.44 *** 14.83 *** -0.011 *** 

(5.14) (3.43) (-2.93) 
ADJINC 0.0001 -0.0001 -0.0000017 *** 

  (0.17)   (-0.27)   (-7.63)   

AdjR2 0.17 0.59 0.97 
N 2275   2275   2275   

 
 

Table 7.11. 2SLS Estimated Result for Fecal with SIG Data: CBG Case 
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Secchi 
COR 

  Linear   Semilog   Loglog   

CONSTANT 201.91 *** 214.46 *** 5.37 *** 

(30.77) (30.69) (179.64) 
PSECCHI -0.38 *** -12.61 *** -0.06 *** 

(-19.39) (-14.97) (-17.82) 
PLOTACR 0.04 ** 0.05 ** 0.0002 ** 

(2.05) (2.25) (2.15) 
PBATH -0.001 *** -0.001 *** -0.000004 *** 

(-3.44) (-4.43) (-4.21) 
PDECK 0.003 *** 0.003 *** 0.00002 *** 

(13.22) (14.47) (15.17) 
PBEACH 0.00 0.000 0.00000 

(1.10) (1.21) (0.92) 
PFECAL 0.00 0.03 *** 0.000 *** 

(-0.01) (3.76) (4.94) 
PCTBACH 0.71 *** 0.88 *** 0.00 *** 

(3.97) (4.93) (4.20) 
PCT0_17 -0.18 0.09 -0.001 

(-1.02) (0.52) (-0.79) 
PCTBLACK -0.14 -0.22 ** -0.001 ** 

(-1.45) (-2.22) (-2.55) 
PCTSINGLE 0.63 *** 0.86 *** 0.004 *** 

(3.22) (4.42) (4.96) 
ADJINC 0.0001 * 0.0000 0.0000002 
  (1.69)   (1.32)   (1.57)   

AdjR2 0.14 0.15 0.17 
N 10655   10655   10655   

 
 
 
 

Table 7.12. 2SLS Estimated Result for Secchi with COR Data: CBG Case 
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Secchi 

SIG 
  Linear   Semilog   Loglog   

CONSTANT 190.47 *** 259.41 *** 5.58 *** 

(20.85) (26.74) (137.93) 
PSECCHI -0.50 *** -27.12 *** -0.13 *** 

(-
20.30) (-22.14) (-25.95) 

PLOTACR 0.03 0.06 0.0003 * 

(0.65) (1.55) (1.75) 
PBATH 0.002 *** 0.001 *** 0.000005 *** 

(4.66) (2.61) (2.77) 
PDECK 0.003 *** 0.003 *** 0.00002 *** 

(8.51) (11.95) (13.08) 
PBEACH -0.01 *** -0.004 *** -0.00003 *** 

(-6.70) (-4.92) (-7.65) 
PFECAL 0.06 *** 0.10 *** 0.001 *** 

(5.33) (9.51) (12.41) 
PCTBACH 1.19 *** 1.30 *** 0.01 *** 

(4.78) (5.55) (5.14) 
PCT0_17 0.11 0.06 -0.001 

(0.45) (0.27) (-0.77) 
PCTBLACK 0.24 * 0.17 0.001 ** 

(1.94) (1.43) (2.33) 
PCTSINGLE 0.22 0.40 ** 0.002 ** 

(1.07) (2.05) (2.23) 
ADJINC -0.0001 -0.0001 -0.0000003 
  (-0.89)   (-1.52)   (-1.61)   

AdjR2 0.22 0.29 0.34 
N 7193   7193   7193   

 
 
 

Table 7.13. 2SLS Estimated Result for Secchi with SIG Data: CBG Case 
 
 
7.4.2  Estimated Demand Function: CBG Case 
 
     Estimated results of two stage least squares are used to calculate inverse demand 

functions. The derived functions are listed in Table 7.14. The slopes of fecal coliform 

demand functions are mostly negative except for the ALL case and [COR, Semi log] 
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case. The price elasticity of demand for SIG cases are -0.73 for semi log case and -1.12 

for log log case.  Therefore, we found that especially for the case of log log demand 

function, the demand is elastic. Even for the semi log case, it is less inelastic comparing 

to the individual houses case.  

     As for the secchi case, the slope is negative for all cases. As oppose to the outcome 

from fecal coliform, the computed price elasticity of demand is lower than the individual 

houses case. They are -0.06 for COR case and -0.13 for SIG case for both semi log and 

log log settings. Therefore, we found that the demand for secchi is twice more inelastic 

for census block group cases.  

 

  
Data 
Type Fun.Form     Intercept Slope   

Fecal 

All Linear P = 6.70 1.34 Q 
COR Linear P = 220.72 -1.08 Q 
COR Semilog lnP = 12.00 0.10 Q 
COR Loglog lnP = 167.57 -46.40 lnQ 
SIG Linear P = 154.22 -0.43 Q 
SIG Semilog lnP = 4.47 -0.0047 Q 
SIG Loglog lnP = 7.16 -0.89 lnQ 

Secchi 

All Linear P = 635.92 -2.64 Q 
COR Linear P = 635.92 -2.64 Q 
COR Semilog lnP = 21.94 -0.08 Q 
COR Loglog lnP = 87.53 -15.59 lnQ 
SIG Linear P = 481.24 -2.01 Q 
SIG Semilog lnP = 12.62 -0.04 Q 
SIG Loglog lnP = 44.90 -7.54 lnQ 

 
 
 

Table 7.14. Estimated Demand Functions: CBG Case 
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Figure 7.24. Log Log Demand Functions for Fecal, COR Data: CBG Case 
 

 
 

Figure 7.25. Linear Demand Functions for Fecal, SIG Data: CBG Case 
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Figure 7.28. Demand Functions for Secchi, COR Data: CBG Case 
 

 
 

Figure 7.29. Demand Functions for Secchi, SIG Data: CBG Case 
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7.4.3 Computed Welfare Change: CBG Case 
         
     Given the driven inverse demand functions, we calculated non-marginal welfare 

change by integrating between x axis and the demand curves. The welfare changes for the 

changes in the level of fecal are very small comparing the case for individual houses. For 

the case of the [SIG, Log log], it ranges between 2.6 (50 counts change) and 12 (150 

counts change) dollars. As before, the welfare changes due to degradation is larger than 

the case with the change in the opposite direction by the same amount. 

 

        New Fecal Level (From 255 counts /100 ml) 
        Improvement Degradation 
      N 230 205 155 105 280 305 355 405 

Fecal 

All Linear 10655 8295 15751 28151 37200 9132 19103 41557 67362 
COR Linear 7311 -1008 -1343 6 4045 -1680 -4034 -10758 -20173 
SIG Linear 2275 1231 2733 6548 11445 961 1651 2219 1705 
COR Semilog 7311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SIG Semilog 2275 -0.9 -1.7 -3.0 -4.1 -1.0 -2.1 -4.8 -8.2 
COR Loglog 7311 - - - - - - - - 
SIG Loglog 2275 -2.6 -5.0 -9.0 -12.0 -2.9 -6.0 -12.9 -20.7 

 
 

Table 7.15  Computed Welfare Change for Fecal (in $ 1996) : CBG Case 
 

 
        New Secchi Level (From 220 cm) 
        Improvement Degradation 
      N 245 270 320 370 195 170 120 70 

Secchi 

All Linear 10655 546 -559 -7722 -21488 2834 6044 18690 37940 
COR Linear 10655 546 -559 -7722 -21488 2834 6044 18690 37940 
SIG Linear 7193 328 -602 -6237 -16906 2055 4432 13896 28395 
COR Semilog 10655 967 1100 1120 1121 10988 58054 3.E+06 2.E+08 
SIG Semilog 7193 1484 2075 2403 2455 4985 13110 95959 619520 
COR Loglog 10655 381 457 479 481 3604 20213 3.E+06 9.E+09 
SIG Loglog 7193 1159 1693 2096 2217 3691 10096 118690 4.E+06 

 
 

Table 7.16  Computed Welfare Change for Secchi (in $ 1996) : CBG Case 
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    The calculated results can be found in Table 7.16 for the water clarity. The welfare 

changes computed is almost 20 times larger than the case with individual houses.  This is 

mainly due to the very inelastic demand function estimated.  We again found that the 

welfare changes for COR data is smaller than the case with SIG data. The degradation of 

water clarity changes households’ welfare with larger magnitude than the case of 

improvement in water clarity. 

 

7.5 Welfare Measure Calculation II 

    The existing hedonic studies which conducted the second stage hedonic analysis 

reported a single demand function for a certain good of interest for the entire housing 

market by controlling socio-demographic features as we just reported in the previous 

section. As we have shown, the welfare measures we computed are based on the demand 

function derived by using the mean value of each variable included in the estimation of 

the demand function.  However, it will be a more accurate representation of the welfare 

changes if we derive the individual demand function for each observation by using 

individual variables (e.g. MIP for FECAL for house i ) and compute the welfare changes 

for each individual by using the individual demand functions. This means that we do not 

aggregate the results at any stage of welfare change calculations. For example, as for the 

ALL data case, we compute 10655 demand functions and integrate over the range 

between the initial values and the targeted level for all 10655 demand functions 

separately. In the end, we report the mean value of the calculated individual welfare 

changes together with other descriptive statistics. 
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     The welfare measures are calculated in the similar settings as the ones reported in the 

previous sections. However, the initial values of water quality are set to be equal to the 

actual values individual houses are facing. Therefore, even though we use the same 

targeted levels of water quality, there may be improvements for some houses and 

degradations for others since the initial values are different.  This fact causes the 

computed areas under the demand curves to be both negative and positive depending on 

the relative quantities between the initial water quality and their targeted values. If the 

targeted value is greater than the initial value, we obtain a positive valued area. On the 

other hand, if the targeted value is less than the initial value, the computed area will be 

negative. Therefore, for the case of fecal coliform counts, if the change is an 

improvement to a household (initial > target), the result will be positive because the 

inverse demand function for fecal is located in the fourth quadrant, and the value will be 

negative if the targeted value is greater than the initial value.  As for secchi readings, if 

the change is an improvement with respect to the initial setting (initial < target), we will 

obtain a positive value as the welfare changes. 

     After obtaining the welfare changes for each household for each case (targeted values 

of 105, 155, 205, 230, 280, 305, 355 and 405 for fecal, 70, 120, 170, 195, 245, 270, 320 

and 370 for secchi), we first compute the overall mean for each case for each data set 

with three different functional forms as before.  This mean is the aggregated mean of the 

welfare changes for both improvement and degradation of water quality.  Therefore, the 

signs of the means depend on the number of houses that will experience improvements 

versus the number of houses which will face degradation of water quality. We should 
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note that this way of identifying the degradation versus improvements does not work for 

the linear specifications of the demand functions since, especially with the inelastic 

demand, the demand line extend to the fourth quadrant from the first, causing calculated 

area to include the areas both above and below the x axis.  Therefore, for the case of 

linear demand functions, signs of the welfare changes computed do not necessarily 

indicate whether the house is experiencing an improvement or a degradation. Although 

we report the computed values, these values should be seen just as a reference. 

     In order to further observe the composition of the positive and negative influences, we 

computed means only with positive areas and with negative areas separately, together 

with some descriptive statistics such as standard deviation, minimum, maximum and 

counts.   The derivations of the integral under each demand curve are done by Matlab, 

and the welfare changes calculated are reported in Tables from 7.17 to 7.30 for both fecal 

coliform and secchi cases. In the tables, the second row states the type of the data set and 

the functional form of the demand function used, and the third row indicates the targeted 

level of water quality, the counts per 100 ml for fecal and the centimeters for secchi. The 

fourth row shows the overall mean of welfare changes, and the calculated means for 

negative and positive welfare changes are reported in the fifth and the sixth rows, 

respectively. The rest of the table includes standard deviation, minimum, maximum and 

the counts for all three cases (ALL,NEG, POS).    
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    FECAL 
  ALL Linear 

    105 155 205 230 280 305 355 405 

MEAN 
ALL 24681 26273 26507 26650 27236 27830 30378 35166 
NEG  -10787 -11375 -13635 -14813 -16876 -17654 -17934 -16800 
POS  194793 159774 132828 118823 94658 83934 68823 60411 

STD.DEV. 
ALL 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 
NEG  8365 8786 11397 12500 13550 13601 13399 12905 
POS  5.E+05 5.E+05 4.E+05 4.E+05 4.E+05 4.E+05 3.E+05 3.E+05 

MIN 
ALL -1.E+05 -8.E+04 -6.E+04 -6.E+04 -7.E+04 -8.E+04 -8.E+04 -8.E+04 
NEG  -1.E+05 -8.E+04 -6.E+04 -6.E+04 -7.E+04 -8.E+04 -8.E+04 -8.E+04 
POS  5 0 8 0 0 1 11 1 

MAX 
ALL 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 
NEG  -3 -2 -5 -1 -1 -1 -3 -11 
POS  4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 4.E+06 

COUNT 
ALL 10665 10665 10665 10665 10665 10665 10665 10665 
NEG  8825 8319 7742 7356 6447 5890 4726 3487 
POS  1840 2346 2923 3309 4218 4775 5939 7178 

 

Table 7.17.  Mean Welfare Changes: Individual Demand Functions, Fecal, ALL, Linear 

 

    FECAL 
  COR Linear  

    105 155 205 230 280 305 355 405 

MEAN 
ALL -7801 -9673 -10839 -11309 -12221 -12623 -13955 -16295 
NEG  -126865 -97210 -74395 -69254 -54905 -49302 -38516 -33208 
POS  9500 8525 8500 8492 8816 9104 9862 10622 

STD.DEV. 
ALL 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 
NEG  4.E+05 4.E+05 3.E+05 3.E+05 3.E+05 2.E+05 2.E+05 2.E+05 
POS  1.E+04 8.E+03 7.E+03 8.E+03 9.E+03 9.E+03 1.E+04 1.E+04 

MIN 
ALL -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 
NEG  -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 -2.E+06 
POS  1 0 17 2 0 2 0 3 

MAX 
ALL 1.E+05 1.E+05 1.E+05 9.E+04 7.E+04 7.E+04 9.E+04 9.E+04 
NEG  -13 -1 -1 -6 -1 -8 -2 -15 
POS  1.E+05 1.E+05 1.E+05 9.E+04 7.E+04 7.E+04 9.E+04 9.E+04 

COUNT 
ALL 5328 5328 5328 5328 5328 5328 5328 5328 
NEG  676 917 1243 1357 1759 1982 2623 3272 
POS  4652 4411 4085 3971 3569 3346 2705 2056 

 

Table 7.18 Mean Welfare Changes: Individual Demand Functions: Fecal, COR, Linear  
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    FECAL 
  COR SemiLog 

    105 155 205 230 280 305 355 405 

MEAN 
ALL -11572 -43479 -46739 -46991 -47097 -47106 -47109 -47110 
NEG  -115626 -92417 -93239 -86146 -82526 -69719 -70288 -58865 
POS  34699 3975 394 131 12 5 0 0 

STD.DEV. 
ALL 4.E+05 5.E+05 5.E+05 5.E+05 5.E+05 5.E+05 5.E+05 5.E+05 
NEG  8.E+05 7.E+05 7.E+05 7.E+05 6.E+05 6.E+05 6.E+05 5.E+05 
POS  93083 9378 960 317 32 11 1 0 

MIN 
ALL -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 
NEG  -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 -2.E+07 
POS  0 0 0 0 0 0 0 0 

MAX 
ALL 2.E+06 2.E+05 2.E+04 5303 508 146 15 2 
NEG  -1 -1 -1 -1 -1 0 -1 0 
POS  2.E+06 2.E+05 2.E+04 5303 508 146 15 2 

COUNT 
ALL 5328 5328 5328 5328 5328 5328 5328 5328 
NEG  1640 2623 2682 2910 3041 3600 3571 4264 
POS  3688 2705 2646 2418 2287 1728 1757 1064 

 

Table 7.19 Mean Welfare Changes: Individual Demand Functions: Fecal, COR, Semilog  

 

    FECAL 
  COR Loglog 

    105 155 205 230 280 305 355 405 

MEAN 
ALL -2.E+24 -2.E+24 -2.E+24 -2.E+24 -2.E+24 -2.E+24 -2.E+24 -2.E+24 
NEG  -8.E+24 -5.E+24 -5.E+24 -5.E+24 -4.E+24 -3.E+24 -4.E+24 -3.E+24 
POS  1.E+17 4.E+12 2.E+09 9.E+07 2.E+05 3.E+04 3.E+02 2.E+01 

STD.DEV. 
ALL 1.E+26 1.E+26 1.E+26 1.E+26 1.E+26 1.E+26 1.E+26 1.E+26 
NEG  3.E+26 2.E+26 2.E+26 2.E+26 2.E+26 2.E+26 2.E+26 2.E+26 
POS  5.E+18 1.E+14 6.E+10 3.E+09 9.E+06 1.E+06 1.E+04 5.E+02 

MIN 
ALL -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 
NEG  -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 -1.E+28 
POS  -5.E-01 -5.E-01 -5.E-01 -5.E-01 -5.E-01 9.E-25 -5.E-01 4.E-28 

MAX 
ALL 2.E+20 5.E+15 3.E+12 1.E+11 4.E+08 4.E+07 7.E+05 2.E+04 
NEG  -6.E-01 -5.E-01 -5.E-01 -5.E-01 -5.E-01 -7.E-37 -5.E-01 -7.E-37 
POS  2.E+20 5.E+15 3.E+12 1.E+11 4.E+08 4.E+07 7.E+05 2.E+04 

COUNT 
ALL 5328 5328 5328 5328 5328 5328 5328 5328 
NEG  1594 2477 2484 2671 2734 3600 2823 4264 
POS  3734 2851 2844 2657 2594 1728 2505 1064 

 

Table 7.20 Mean Welfare Changes: Individual Demand Functions: Fecal, COR, Loglog  
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    FECAL 
  SIG Linear 

    105 155 205 230 280 305 355 405 

MEAN 
ALL -1268 -3055 -4503 -5019 -5813 -5969 -6438 -7097 
NEG  -146892 -147832 -90669 -71335 -53063 -48305 -40084 -32807 
POS  9966 8322 7448 7328 7272 5809 7934 8532 

STD.DEV. 
ALL 9.E+04 9.E+04 9.E+04 9.E+04 1.E+05 1.E+05 1.E+05 1.E+05 
NEG  3.E+05 3.E+05 3.E+05 2.E+05 2.E+05 3.E+05 2.E+05 2.E+05 
POS  1.E+04 8.E+03 7.E+03 7.E+03 8.E+03 8.E+03 9.E+03 1.E+04 

MIN 
ALL -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 
NEG  -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 -1.E+06 
POS  548 33 11 5 0 -5701 0 2 

MAX 
ALL 2.E+05 1.E+05 1.E+05 1.E+05 1.E+05 9.E+04 8.E+04 8.E+04 
NEG  523 -44 -12 -11 -1 -6185 -1 -5 
POS  2.E+05 1.E+05 1.E+05 1.E+05 1.E+05 9.E+04 8.E+04 8.E+04 

COUNT 
ALL 3555 3555 3555 3555 3555 3555 3555 3555 
NEG  254 259 433 558 771 254 1064 1344 
POS  3301 3296 3122 2997 2784 3301 2491 2211 

 
 
Table 7.21 Mean Welfare Changes: Individual Demand Functions: Fecal, SIG, Linear  
 
 
    FECAL 

  SIG SemiLog 
    105 155 205 230 280 305 355 405 

MEAN 
ALL 2159689 2159687 2159685 2159684 2159680 2159678 2159672 2159663 
NEG  -1 -3 -6 -8 -11 -11 -18 -26 
POS  3079701 3572682 3687651 3860074 4556489 6231884 6861195 9086002 

STD.DEV
. 

ALL 2.E+07 2.E+07 2.E+07 2.E+07 2.E+07 2.E+07 2.E+07 2.E+07 
NEG  2 3 6 8 12 14 21 29 
POS  3.E+07 3.E+07 3.E+07 3.E+07 3.E+07 4.E+07 4.E+07 5.E+07 

MIN 
ALL -29 -66 -118 -151 -238 -295 -442 -651 
NEG  -29 -66 -118 -151 -238 -295 -442 -651 
POS  0 0 0 0 0 0 0 0 

MAX 
ALL 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 
NEG  -1 -1 -1 -1 -1 0 -1 0 
POS  3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 3.E+08 

COUNT 
ALL 3555 3555 3555 3555 3555 3555 3555 3555 
NEG  1062 1406 1473 1566 1870 2323 2436 2710 
POS  2493 2149 2082 1989 1685 1232 1119 845 

 
 
Table 7.22 Mean Welfare Changes: Individual Demand Functions: Fecal, SIG, Semilog 
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     We are going to discuss the results for the SIG data set with the log log demand 

function cases as an example.  The number of houses experiencing improvements 

(degradation) increases as the target level of fecal counts becomes lower (higher). Overall 

means indicate that the welfare changes for targeting the new levels of fecal counts 

increase the welfares of households by 341 dollars if the target is 105 counts and it is 252 

dollars if it is 405 counts. By targeting 205 counts, for example, 2088 houses are affected 

positively (welfare increase) and 1467 houses are affected negatively (welfare decrease), 

meaning the initial fecal levels were lower than 205 for these 1467 houses.  The average 

welfare changes for the houses facing the degradation vary from 3 dollars (for 105 

counts) to 99 dollars (for 405 counts).  On the other hand, for the houses which are going 

to experience the improvements of fecal counts to the targeted level, the welfare 

improvements range between 481 and 1379 dollars. 

    If we can assume that the population of the SIG data set is computed by the percentage 

of SIG to ALL data (33% ) times real population of four counties (466,992 in 2000), the 

welfare increase for targeting, for example 155 counts can be computed as 

0.33*466992*564, or  86,916,551 dollars (all amounts are in 1996 dollars) and the 

welfare decreases for the same level are computed as 0.33*466992*8, or  1,232,859 

dollars. If we use the overall average value of 337 dollars, the net welfare gain is 

computed as 51,934,180 dollars. 
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    FECAL 

  SIG Loglog 
    105 155 205 230 280 305 355 405 

MEAN 
ALL 341 337 331 326 313 304 282 252 
NEG  -3 -8 -19 -25 -41 -45 -69 -99 
POS  481 564 577 615 707 963 1125 1379 

STD.DEV. 
ALL 3193 3193 3193 3193 3194 3195 3197 3203 
NEG  6 20 48 66 113 134 206 298 
POS  3782 4093 4149 4288 4608 5363 5804 6422 

MIN 
ALL -166 -647 -1585 -2275 -4199 -5473 -8750 -13137 
NEG  -166 -647 -1585 -2275 -4199 -5473 -8750 -13137 
POS  0 0 0 0 0 0 0 0 

MAX 
ALL 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 
NEG  -1 -1 -1 -1 -1 0 -1 0 
POS  5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 

COUNT 
ALL 3555 3555 3555 3555 3555 3555 3555 3555 
NEG  1033 1408 1467 1603 1871 2323 2510 2710 
POS  2522 2147 2088 1952 1684 1232 1045 845 

 
 
Table 7.23 Mean Welfare Changes: Individual Demand Functions: Fecal, SIG, Loglog 
 
 
    SECCHI 

  ALL Linear 
    70 120 170 195 245 270 320 370 

MEAN 
ALL 31907 11456 913 -152 -524 -1494 -9253 -24068 
NEG  -13066 -22679 -24066 -15005 -8613 -7032 -10875 -24400 
POS  33746 14265 4380 4444 -1794 6231 6461 6361 

STD.DEV. 
ALL 1.E+04 1.E+04 1.E+04 1.E+04 1.E+04 1.E+04 9380 8026 
NEG  9.E+03 1.E+04 2.E+04 2.E+04 1.E+04 1.E+04 8062 7375 
POS  9196 6031 3914 4690 9751 5635 6197 6939 

MIN 
ALL -3.E+04 -5.E+04 -6.E+04 -7.E+04 -7.E+04 -6.E+04 -5.E+04 -4.E+04 
NEG  -3.E+04 -5.E+04 -6.E+04 -7.E+04 -7.E+04 -6.E+04 -5.E+04 -4.E+04 
POS  142 40 10 3 -26537 1 0 25 

MAX 
ALL 1.E+05 7.E+04 4.E+04 4.E+04 4.E+04 4.E+04 4.E+04 3.E+04 
NEG  -15 -15 -1 -1 2717 0 -8 -44 
POS  1.E+05 7.E+04 4.E+04 4.E+04 4.E+04 4.E+04 4.E+04 3.E+04 

COUNT 
ALL 10665 10665 10665 10665 10665 10665 10665 10665 
NEG  419 811 1300 2520 4987 6212 9667 10550 
POS  10246 9854 9365 8145 5678 4453 998 115 

 

 Table 7.24 Mean Welfare Changes: Individual Demand Functions: Secchi, ALL, Linear 
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    SECCHI 
  COR Linear  

    70 120 170 195 245 270 320 370 

MEAN 
ALL 19127 8237 2278 1549 1393 1219 -1476 -7440 
NEG  -3701 -7306 -9409 -6894 -4242 -3177 -4118 -8984 
POS  19439 9029 3366 3044 3953 4380 5320 6960 

STD.DEV. 
ALL 7595 6150 5077 5373 6376 6393 6015 6478 
NEG  2852 5007 6914 7518 6769 5987 3553 3953 
POS  7152 5054 3134 3019 4163 4540 5716 7611 

MIN 
ALL -1.E+04 -2.E+04 -3.E+04 -3.E+04 -3.E+04 -3.E+04 -2.E+04 -2.E+04 
NEG  -1.E+04 -2.E+04 -3.E+04 -3.E+04 -3.E+04 -3.E+04 -2.E+04 -2.E+04 
POS  73 28 6 3 0 0 -4 -11 

MAX 
ALL 73526 51449 32970 28997 37672 40930 53286 62043 
NEG  -71 -12 -1 -1 -1 0 -4 -11 
POS  73526 51449 32970 28997 37672 40930 53286 62043 

COUNT 
ALL 8754 8754 8754 8754 8754 8754 8754 8754 
NEG  118 424 746 1317 2735 3662 6304 7906 
POS  8636 8330 8008 7437 6019 5092 2451 849 

 
 
Table 7.25 Mean Welfare Changes: Individual Demand Functions: Secchi, COR, Linear 
 
 
 
    SECCHI 

  COR SemiLog 
    70 120 170 195 245 270 320 370 

MEAN 
ALL -1127932 -115271 -2220 7240 11457 11810 11967 11985 
NEG  -1127932 -119650 -13699 -4292 -362 -107 -15 -2 
POS  - 135910 22345 25158 18088 14999 13028 12597 

STD.DEV. 
ALL 1.E+07 1.E+06 1.E+05 1.E+05 1.E+05 1.E+05 1.E+05 1.E+05 
NEG  1.E+07 1.E+06 1.E+05 4.E+04 3566 1174 60 6 
POS  - 2.E+05 1.E+05 2.E+05 2.E+05 2.E+05 1.E+05 1.E+05 

MIN 
ALL -5.E+08 -5.E+07 -5.E+06 -2.E+06 -2.E+05 -5.E+04 -1507 -125 
NEG  -5.E+08 -5.E+07 -5.E+06 -2.E+06 -2.E+05 -5.E+04 -1507 -125 
POS  - 465 47 236 3 0 1 0 

MAX 
ALL -1.E+04 2.E+06 3.E+06 6.E+06 8.E+06 8.E+06 8.E+06 8.E+06 
NEG  -1.E+04 -1192 -130 -9 -1 0 -1 0 
POS  - 2.E+06 3.E+06 6.E+06 8.E+06 8.E+06 8.E+06 8.E+06 

COUNT 
ALL 8754 8754 8754 8754 8754 8754 8754 8754 
NEG  8754 8604 5966 5326 3146 1848 712 425 
POS  0 150 2788 3428 5608 6906 8042 8329 

 
 
Table 7.26 Mean Welfare Changes: Individual Demand Functions: Secchi,COR, Semilog 
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    SECCHI 
  COR Loglog 

    70 120 170 195 245 270 320 370 

MEAN 
ALL -1.E+07 -143315 7288 13840 16583 16866 17045 17087.25 
NEG  -1.E+07 -154782 -9561 -2902 -304 -123 -40 -10.598 
POS  - 514397 43344 39850 26056 21412 18558 17959.7 

STD.DEV. 
ALL 1.E+08 2.E+06 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 
NEG  1.E+08 2.E+06 9.E+04 3.E+04 2975 1267 161 36.44849 
POS  - 8.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 2.E+05 

MIN 
ALL -5.E+09 -7.E+07 -4.E+06 -1.E+06 -1.E+05 -5.E+04 -4.E+03 -7.E+02 
NEG  -5.E+09 -7.E+07 -4.E+06 -1.E+06 -1.E+05 -5.E+04 -4.E+03 -7.E+02 
POS  - 973 42 160 2 0 2 0.119871 

MAX 
ALL -2.E+05 7.E+06 8.E+06 8.E+06 8.E+06 8.E+06 8.E+06 8.E+06 
NEG  -2.E+05 -2380 -103 -7 -1 0 -2 -0.76751 
POS  - 7.E+06 8.E+06 8.E+06 8.E+06 8.E+06 8.E+06 8.E+06 

COUNT 
ALL 8754 8754 8754 8754 8754 8754 8754 8754 
NEG  8754 8604 5966 5326 3146 1848 712 425 
POS  0 150 2788 3428 5608 6906 8042 8329 

 
 
 
Table 7.27 Mean Welfare Changes: Individual Demand Functions: Secchi, COR, Loglog 
 
 
    SECCHI 

  SIG Linear 
    70 120 170 195 245 270 320 370 

MEAN 
ALL 16901 7971 3195 2556 2554 2662 1352 -2320 
NEG  -2607 -4698 -7151 -6097 -3290 -2361 -2622 -5340 
POS  17003 8337 3714 3245 3906 4476 5455 7119 

STD.DEV. 
ALL 7784 5977 4217 4178 5256 5585 6141 7110 
NEG  2370 3421 4459 5285 4930 4371 2515 2751 
POS  7673 5625 3469 3193 4321 4811 6081 8206 

MIN 
ALL -9651 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -1.E+04 
NEG  -9651 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -2.E+04 -1.E+04 
POS  48 3 18 4 0 0 1 3 

MAX 
ALL 8.E+04 5.E+04 3.E+04 3.E+04 4.E+04 5.E+04 6.E+04 7.E+04 
NEG  -31 -23 -42 -11 -1 -1 -1 -2 
POS  8.E+04 5.E+04 3.E+04 3.E+04 4.E+04 5.E+04 6.E+04 7.E+04 

COUNT 
ALL 5796 5796 5796 5796 5796 5796 5796 5796 
NEG  30 163 277 427 1089 1538 2944 4391 
POS  5766 5633 5519 5369 4707 4258 2852 1405 

 
 
Table 7.28 Mean Welfare Changes: Individual Demand Functions: Secchi, SIG, Linear 
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    SECCHI 
  SIG SemiLog 

    70 120 170 195 245 270 320 370 

MEAN 
ALL -56969 -16314 -2130 981 3905 4546 5148 5358 
NEG  -56969 -17090 -5937 -2769 -630 -363 -219 -58 
POS  - 12913 4667 6426 6186 5599 5532 5628 

STD.DEV. 
ALL 3.E+05 1.E+05 2.E+04 1.E+04 2.E+04 3.E+04 3.E+04 3.E+04 
NEG  3.E+05 1.E+05 3.E+04 6999 949 531 198 56 
POS  - 1.E+04 1.E+04 2.E+04 3.E+04 3.E+04 3.E+04 3.E+04 

MIN 
ALL -2.E+07 -7.E+06 -1.E+06 -2.E+05 -2.E+04 -4701 -1422 -354 
NEG  -2.E+07 -7.E+06 -1.E+06 -2.E+05 -2.E+04 -4701 -1422 -354 
POS  - 116 39 162 14 3 18 3 

MAX 
ALL -5431 1.E+05 2.E+05 5.E+05 1.E+06 1.E+06 2.E+06 2.E+06 
NEG  -5431 -418 -197 -19 -4 -2 -59 -17 
POS  - 1.E+05 2.E+05 5.E+05 1.E+06 1.E+06 2.E+06 2.E+06 

COUNT 
ALL 5796 5796 5796 5796 5796 5796 5796 5796 
NEG  5796 5646 3715 3432 1940 1024 387 275 
POS  0 150 2081 2364 3856 4772 5409 5521 

 
 
Table 7.29 Mean Welfare Changes: Individual Demand Functions: Secchi, SIG, Semilog 
 
 
    SECCHI 

  SIG Loglog 
    70 120 170 195 245 270 320 370 

MEAN 
ALL -111286 -15404 -1263 1207 3539 4121 4792 5138 
NEG  -111286 -16372 -4785 -2271 -627 -448 -391 -147 
POS  - 21028 5025 6255 5635 5101 5163 5402 

STD.DEV. 
ALL 7.E+05 1.E+05 2.E+04 1.E+04 2.E+04 2.E+04 2.E+04 3.E+04 
NEG  7.E+05 1.E+05 2.E+04 5522 950 673 358 142 
POS  - 2.E+04 1.E+04 2.E+04 2.E+04 22976 25293 26972 

MIN 
ALL -5.E+07 -7.E+06 -1.E+06 -1.E+05 -2.E+04 -5834 -2576 -894 
NEG  -5.E+07 -7.E+06 -1.E+06 -1.E+05 -2.E+04 -5834 -2576 -894 
POS  - 152 32 128 13 3 25 6 

MAX 
ALL -1.E+04 1.E+05 2.E+05 4.E+05 1.E+06 1.E+06 2.E+06 2.E+06 
NEG  -1.E+04 -543 -164 -16 -4 -2 -94 -41 
POS  - 1.E+05 2.E+05 4.E+05 1.E+06 1.E+06 2.E+06 2.E+06 

COUNT 
ALL 5796 5796 5796 5796 5796 5796 5796 5796 
NEG  5796 5646 3715 3432 1940 1024 387 275 
POS  0 150 2081 2364 3856 4772 5409 5521 

 
 
Table 7.30 Mean Welfare Changes: Individual Demand Functions: Secchi, SIG, Loglog 
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    As for water clarity, if we use the outcomes from the SIG data with the log log 

specification, all the houses are subject to the welfare loss if the water clarity goes down 

to the level of 70 centimeters. On the other hand, 95 percent of household included into 

this data subset experience welfare gains if the water clarity increases to the level of 370 

centimeters. If the water clarity target is set to 245 centimeters, 3856 houses are affected 

positively and 1946 houses face welfare losses. The average welfare gain for the target 

level of 245 centimeters is 5635 dollars while the average welfare loss is 627 dollars. 

     If we do the same type of calculation as the fecal case, the percentage of relevant 

population (54 percent) times the total population (466,992) times 5635 dollars gives 

total welfare gains for targeting water clarity as 245 centimeters as 1,431,456,925 dollars 

while the welfare loss is 159,276,574 dollars. The net welfare gain is computed as 

899,010,835 dollars. 

    Once again, we have to emphasize that these computed welfare gains and losses are 

based on the evaluation of water quality by home purchasers. These monetary values do 

not include either other services provided by the Lake water quality or benefits/damages 

to the Lake biology. 

    The calculated per household average welfare gains and losses could be an indicator 

for the policy makers to make decisions regarding the water quality controls and welfare 

changes for various target populations. 
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7.6  Comparison: Individual Houses vs. Census Block Group Case 
 
     The difference between individual houses and census block group case is the unit of 

building blocks that we used for clustering. From different clustering practice, we 

produced six relatively similar clusters between two cases and four obviously different 

clusters.  We estimated separate first stage and second stage hedonic models, derived 

demand functions and calculated welfare measures for the change in water quality 

variable. 

    Regardless of the similarities in clustering outcomes, the estimated inverse demand 

functions for each case are quite different in terms of intercepts and the price elasticity of 

demand. Due to very inelastic demand functions derived for Secchi case, the calculated 

welfare changes due to the changes in the same amount of water quality differ quite 

significantly.  

 
7.7  Conclusion 
 
     The second stage hedonic analysis has been conducted and reported in this chapter. 

The outcomes for fecal coliform demand estimation do not look credible especially for 

COR data set because of very low adjusted R-squares and non-robustness in signs of 

estimated coefficients. It is highly likely that the unstable results for the fecal variable are 

due to one or more omitted variable(s) which we do not have at hand, but influencing the 

demand for fecal in great deal. This may be correlated with a certain factor related to the 

costs of reducing the discharge of organic matter from the houses although we cannot 

prove this possibility at this point.   
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     In most of the cases, we found that fecal coliform and water clarity are substitutes to 

each other.  Although the distance to the beach variable was mostly statistically 

insignificant, in some cases it was found to be a complement to the water quality. 

     If we compare the results for secchi in both individual houses and census block group 

cases, the more consistent results across different specifications are found for individual 

houses case. The estimated demand functions also look more reasonable for individual 

houses case with less inelastic results. The comparison between fecal and secchi variables 

tell us that fecal coliform value itself may not be well reflected to housing price to reveal 

its value.  Considering the more robust results for secchi readings, it has been confirmed 

that what people observe when they make house purchase decision is not actual bacterial 

counts level, but water clarity and probably beach closing information which we could 

not incorporate due to lack of exact data and variability of the data. 

    For all the cases, we found that the welfare changes from the improvements in water 

quality are less than the change is the same amount of water quality in the other direction, 

degradation.  We also found that estimated welfare changes are larger for the houses 

whose housing value is significantly affected by water quality comparing to the houses 

whose value may be affected, but not statistically significantly.  

    Computed welfare change for the improvement of water clarity by 50 centimeters 

(from 220 to 270) is 104 dollars for individual houses case and 1693 dollars for census 

block group case while it increase to176 dollars and 2217 dollars for the increase by 1.5 

meters for individual houses and census block group cases, respectively for the houses 

whose values are significantly affected by water clarity.  If water clarity decrease by 50 
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centimeters, the welfare lost is estimated as 101 dollars and 3691 dollars for individual 

houses and census block group cases, respectively. Due to the low elasticity, the degree 

of welfare changes increase substantially for the changes beyond the steep changes in the 

slope of the demand functions.   

     We further analyzed the welfare changes by using demand functions derived 

specifically for each household. Welfare changes based on the individual demand 

functions were computed by integrating under each demand curve for multiple scenarios. 

If we consider our SIG Fecal data represents 33 percent of entire population in four 

counties, the total estimated net benefit was derived as 51,934,180 dollars for targeting 

155 fecal coliform counts. The total net welfare gain was computed as 899,010,835 

dollars for targeting 245 centimeters of water clarity.  
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CHAPTER 8 
 

CONCLUSION AND FUTURE WORKS 
 
 

     Demand functions of water quality of Lake Erie in terms of fecal coliform counts and 

secchi disk depth readings are estimated by using Cluster Analysis, the first and the 

second stages of hedonic price models.  Two types of Cluster Analysis are implemented 

by using individual houses and census block group as building block of each cluster. Four 

similarity measures (CDF transformation, CDF + Hamming, CDF + Categorical 1, CDF 

+ Categorical 2) are employed in order to handle mixed cluster variables type (continuous 

and categorical) more properly comparing to (standardized) Euclidean distances often 

used in the determination of market segmentations.  Clustering outcomes from four 

different settings are compared in terms of computed weighted mean squared errors 

(WMSE) from ordinary least squares estimation for each cluster. The optimal numbers of 

clusters are determined by identifying the “knee-point” from WMSE plots together with 

the information obtained from weight R-squares calculation. For individual houses case, 

Categorical 1 method with 11 clusters is adopted while for census block group case, 

Categorical 2 method with 10 clusters is chosen for the following hedonic estimations.  
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       As the result of Chow test, two clusters in individual houses case are merged 

together. Therefore, for both settings, we used 10 clusters as determined submarkets in 

the extent of our data. 

     Given determined clusters, we estimated spatial hedonic price models after confirming 

the type of spatial autoregressive models by using robust Lagrange Multiplier tests with 

four types of weight matrices.  Spatial error model has been tested more likely model for 

all clusters. We observe mixed signs for the influence of fecal coliform counts on housing 

price from spatial hedonic price estimations. Therefore, we define two different subsets 

of data in order to analyze the influence of water quality to houses which are influenced 

by water quality in different degree. The first subsets of data include the houses which are 

influenced negatively by fecal coliform counts and positively by water clarity regardless 

of the significance (COR Data). The second subsets of data include the observations that 

are affected by fecal coliform negatively and by water clarity positively at statistically 

significant level (SIG Data).  

     Average marginal implicit prices estimated from the first stage of estimation are 

minus 21.6 dollars for fecal in the case with COR data.  For SIG data, it is minus 30.5 

dollars. The estimated MIP for secchi of SIG data is 40.5 dollars and it is 56 dollars for 

SIG data. Note that all the prices used and derived in our study is in year 1996 dollar.  

For the results from census block group case, MIPs for fecal are estimated as minus 18 

dollars for COR data and minus 53.6 dollars for SIG data. MIPs for secchi is derived as 

33.9 dollars and 43 dollars for COR and SIG data, respectively.  
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      Based on the estimated MIPs for each observation, we estimated the second stage of 

hedonic estimation by using two-stage least squares. Estimated results suggest that fecal 

coliform counts is a substitute to water clarity in house owner’s demand determination.  

Given the estimated results from two stage least squares, we computed inverse demand 

functions and derived welfare measures for non-marginal changes in water quality. The 

magnitudes of welfare changes are greater for the water quality degradation comparing to 

the improvements. Welfare changes are larger for the case of SIG data set comparing to 

COR data set. Estimated welfare change for water clarity by using SIG data and log log 

specification is 63, 104, 151 and 176 dollars for the improvements of water clarity by 25, 

50, 100 and 150 centimeters from 2.2 meters, respectively, while they are 101, 276, 1272 

and 8031 dollars for the decreases in water clarity by 25, 50, 100 and 150, respectively. 

Due to the very inelastic nature of demand functions estimated for secchi in census block 

group case, the derived welfare measures are about 20 times higher for CBG case.  

     Although existing studies report aggregated demand function and welfare changes 

based on the aggregated level of demand function, welfare changes based on individual 

variables and water quality that each household is facing may represent more accurate 

welfare changes. Therefore, we derived the demand functions for each observation and 

computed welfare changed based on the individual demand functions. If we consider our 

SIG Fecal data represents 33 percent of entire population in four counties, the total 

estimated net benefit was derived as 51,934,180 dollars for targeting 155 fecal coliform 

counts. The total net welfare gain was computed as 899,010,835 dollars for targeting 245 

centimeters of water clarity.  
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     As a future work, we would like to explore more about optimal clustering in the area 

of hedonic price analysis. In this study, we used six clustering variables (median 

household income, distance to the coast line, distance to the closest city, x, y coordinates, 

and categorical value indicating each municipality which include cites, villages and 

townships. Although we used equal weights to all these variables, it is possible that 

different housing submarket have different priority variables which have higher weights 

in the determination of submarkets. For example, houses near the coast line may have 

different priority for being closer to a city comparing to the houses near the city center.  

Figure out these weights have to be done simultaneously with determining the cluster 

boundaries.  Finding the “right” amount of variables that are the good representative of 

given data and assigning the weights on each attribute depending on their importance are 

the problem dealt in the area of Feature Selection.  Due to the complexity of the process, 

we place this task as our future work.   

    Tying and comparing different methods for the determination of the optimal number of 

clusters is also interesting thing to do.  There are various methods to do this task in 

different academic fields.  However, the method has to be adjusted to reflect data 

characteristics at hand. Therefore studies to determine the method will be necessary in 

market segmentation area.  
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     We used Kriging in order to handle secchi disk depth readings data. However, more 

ideal interpolation should include the modeling of water flows from rivers in terms of 

direction and magnitude, coastal geography, weather conditions and other related 

biological situations.  We leave the incorporation of such modeling into the analysis as 

future work. 
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