Tracking Harmful Algal Blooms from Source to Impact | Ohio Sea Grant

[ ☰ ] Ohio State University

The Ohio State University

Ohio Sea Grant


Tracking Harmful Algal Blooms from Source to Impact

3:05 pm, Mon May 23, 2016 – This series will cover the Harmful Algal Bloom Research Initiative (HABRI), a collaboration between Ohio universities funded by the Ohio Department of Higher Education

Part 1 of the Harmful Algal Bloom Research Initiative Series

Harmful Algal Bloom Research Initiative Series

The Ohio Department of Education (ODHE) Harmful Algal Blooms Research Initiative (HABRI) was started in response to the August 2014 water crisis in Toledo, when hundreds of thousands of residents were advised not to drink their tap water due to toxins from a harmful algal bloom. In response, ODHE provided $2 million in funding to Ohio universities for research addressing the problem, with universities matching that funding for a total of over $4 million.

Led by representatives from The Ohio State University and the University of Toledo, and managed by Ohio Sea Grant, HABRI brings together researchers from a number of Ohio universities and partners as far-flung as South Dakota and Japan to help solve the harmful algal bloom problems plaguing Lake Erie and Ohio’s inland lakes.

The 18 projects funded by the first year of HABRI are divided into four focus areas: tracking blooms from the source, protecting public health, producing safe drinking water, and educating and engaging people about addressing harmful algal blooms.

Tracking Harmful Algal Blooms from Source to Impact

The three current projects in this focus area aim to improve use of existing technologies as well as develop new methods to detect, prevent and mitigate harmful algal blooms (HABs) and their impacts. This helps to ensure drinking water safety and a healthy environment for lakeshore residents by connecting the dots between many of HABs’ potential causes and effects.

To track the problem where it begins – high up in the Lake Erie watershed – Laura Johnson at Heidelberg University is leading a project that monitors runoff from farm fields farther up in the rivers and streams that bring nutrients and pollutants to the lake. Samples collected from rivers like the Blanchard, which flow into the Maumee and then Lake Erie, will record changes in phosphorus runoff from fields planted with different crops, and after heavy rainfall events, to determine how those factors affect overall runoff.

In addition, the project scientists will analyze water samples to develop a “fingerprinting” method for different types of phosphorus. Looking at different isotopes of oxygen in phosphate – which differ in their atomic weight – may help pinpoint phosphorus that comes from commercial fertilizers instead of other sources, while the molecular structure of dissolved organic phosphorus connects the nutrient to organic sources like manure or wastewater treatment plant discharge.

“Having those two things together, we’re hoping that we can then distinguish different sources of phosphorus,” said Laura Johnson, the project’s lead researcher and director of the National Center for Water Quality Research at Heidelberg University. “The ultimate goal is that we would end up with the ability to collect samples at the ends of watersheds and have some understanding of where that phosphorus came from: what percentage of it is manure, what percentage commercial fertilizer, and so on.”

Algal Bloom at Stone Lab

Algal blooms in Lake Erie and its tributaries can negatively affect drinking water for lakeshore residents. New research projects are helping to monitor water conditions and develop an early warning system for potential problems.

Two complementary projects in this focus area are developing warning networks for Lake Erie’s western basin, where harmful algal blooms are most common. Tailored specifically for Maumee Bay and Sandusky Bay, the networks provide basin-wide data coverage of bloom-affected areas by streaming data from water quality buoys and sensors positioned near water treatment plant intakes to an online database.

“The main goal of the project was to create a harmful algal bloom early warning system for the use of water plant managers who use water from Lake Erie,” said Tom Bridgeman, principal investigator on the Maumee Bay project and associate professor at the University of Toledo. “Along with placing a buoy upstream of the Toledo water intake, we instituted a weekly sampling regime around the water intake and into Maumee Bay so that if there was a toxic bloom approaching the intake, we could give them a heads-up.”

In addition, the researchers are collecting background environmental information such as temperature, sunlight, water clarity, phosphorus and nitrogen levels to better understand what triggers harmful algal blooms, and how changes in water chemistry can cause them to produce toxins.

The early warning system in Sandusky Bay focuses on similar parameters, just in a different part of the lake. Both projects also work with scientists from NASA to match aircraft and satellite observations of Lake Erie algal blooms to actual water quality data. Although satellites cover a larger area, aircraft can provide more detailed imagery of blooms and operate on cloudy days when satellites can’t see the lake, Bridgeman explained. These methods could allow researchers to determine which kinds of algae make up a bloom from remote sensing images instead of having to take boats out to specific sampling locations.

The Sandusky system already demonstrated its potential during the 2015 season. A rapid increase in chlorophyll, a green algal pigment, was detected on July 17, indicating that algae were present at the primary water intake for Sandusky’s Big Island Water Works.

“On that day, there was a lot of chlorophyll that entered the water treatment plant,” said George Bullerjahn, project lead and professor of biology at Bowling Green State University. “However, the parallel phycocyanin (a blue-green pigment found in HABs) sensor was silent, indicating that all the material that entered the water treatment plant was green algae, it wasn’t cyanobacteria. So the plant staff didn’t have to worry about toxicity, but they did have to worry green algae which may have affected taste and odor issues.”

The same warning systems will be deployed in both bays again in future years to reduce the likelihood of future bloom events interrupting water services to residents and tourists, potentially causing large-scale economic damage for the area.

Combining data from river sensors with information from lake buoys will help refine predictive models that can relate weather events to runoff and subsequent algal blooms, giving water managers more time to react to potential bloom events.

“By the end of this project, we will have a good idea of where the optimal sites to place these buoys are and what the optimal number of buoys is,” said Bridgeman. “The Maumee and Sandusky Bay projects each operate one buoy, but if you put the data from all of the buoys in the remote sensing network together, you certainly develop a more comprehensive picture of bloom dynamics in the western basin.

More information about the current HABRI projects is available at, where you can also download the 2015 annual report.

ARTICLE TITLE: Tracking Harmful Algal Blooms from Source to Impact PUBLISHED: 3:05 pm, Mon May 23, 2016 | MODIFIED: 11:14 am, Fri February 23, 2018
Share Streams Print
Christina Dierkes
Outreach Specialist, Ohio Sea Grant College Program

As Ohio Sea Grant’s science writer, Christina covers research, education and outreach projects in the Great Lakes for a wide range of audiences. She also produces online events like Stone Lab’s Guest Lecture Series and other outreach events, and manages social media for Ohio Sea Grant and Stone Lab.