OHIO SEA GRANT AND STONE LABORATORY

An Overview of Harmful Algal Bloom Research in Ohio

Dr. Chris Winslow, Director
Ohio Sea Grant and Ohio State University's
Stone Lab

Efforts on Numerous Fronts

- Senate Bill 299 ("Clean Lake 2020 Plan"); \$36M
- Open Lake Impairment Designation (EPA, NOAA, BGSU, UT, OSU's Stone Lab, and Ohio Sea Grant)
- White paper turned peer review (OSU, Ohio Sea Grant, NWF, Heidelberg, and USDA)
- Understanding HABs: State of the Science (Sept. 12th)
- ECOHAB: forecasting algal bloom toxicity (OSU's Stone Lab, LimnoTech, BGSU, MTU, UT, and Wayne State)
- H₂Ohio Initiative (Governor DeWine) Protect State Water Quality
- Ohio Department of Higher Education HAB Research Initiative

HAB Research Initiative

- Goals:
 - Produce safe drinking water
 - Assess human health impacts/risk
 - How do blooms behave
 - Assess nutrient runoff
- Collaborative priority setting and information sharing across academics, agencies, producers and numerous stakeholders
- Co-managed by Ohio Sea Grant and University of Toledo

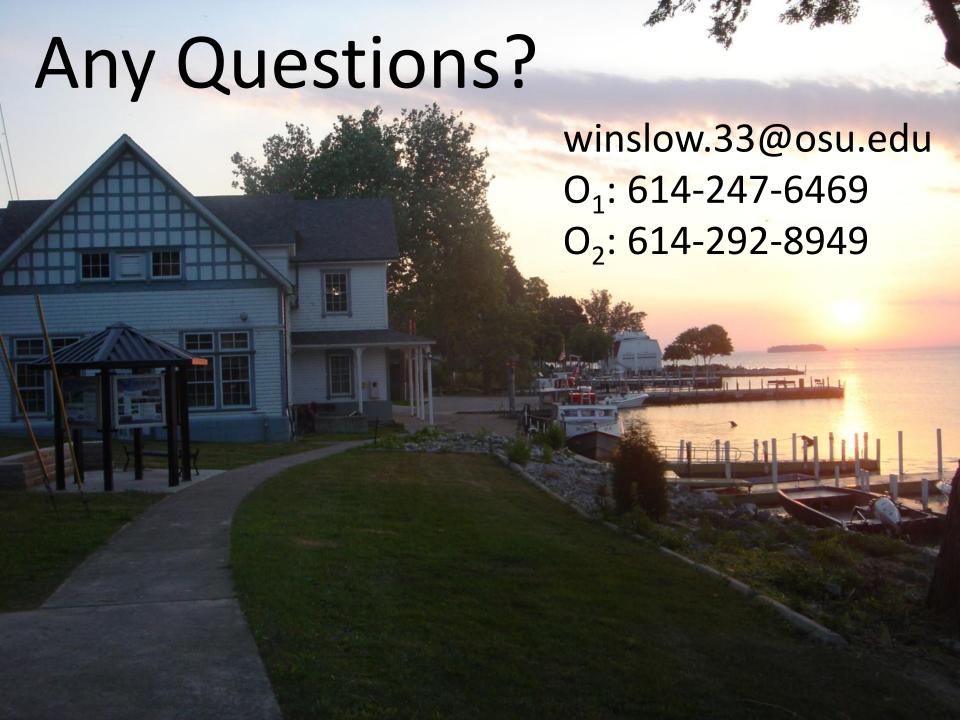
Truly Collaborative

- Environmental <u>drivers of saxitoxin production</u> in recreational and drinking waters; BGSU/Davis
- Model simulating how <u>conservation actions might impact</u> <u>tile-drained fields</u>; OSU/Kalcic
- Design and launch of Harmful Algae Bloom <u>Satellite-1</u>; UC/McGhan
- Expanding <u>Heidelberg Tributary Loading Program</u>; Heidelberg/Johnson

- Lake Erie open water <u>HAB impairment criteria</u>;
 Toledo/Bridgeman
- Evaluating changes in on-farm manure management on dissolved phosphorus runoff; OSU/Keener
- Mapping of agricultural BMPs and farmer perceptions;
 Toledo/Rai
- Spatial distribution model for manure from CAFOs; Toledo/Lawrence

- Tracking and attenuating nutrient loads from Manure fertilization; BGSU/Midden
- Biosensors for detection of multiple cyanotoxins in water;
 OSU/Lu
- Environmental <u>fate and persistence</u> of Microcystin in land applied drinking water <u>treatment residuals</u>; OSU/Basta
- Quantifying <u>viral activity</u> associated with blooms to <u>inform</u> <u>water treatment</u>; BGSU/McKay

- Optimizing the use of <u>powdered activated carbon for Saxitoxin</u> removal; OSU/Lenhart
- Microcystin <u>detoxifying water biofilters</u>; Toledo/Huntley
- <u>Sensors</u> for detection of Microcystins in human <u>biological</u> <u>samples</u> (e.g, blood and urine); OSU/Lu
- HAB associated health effects and <u>airborne microcystin</u> levels in recreational lake users; Toledo/Ames



- Identifying <u>biomarkers</u> of acute and chronic cyanotoxin exposure in organisms with <u>liver cancer</u>; OSU/Knobloch
- <u>Novel therapies</u> for microcystin induced totoxicity in individuals with <u>pre-existing liver disease</u>; Toledo/Kennedy
- <u>Inflammatory bowel disease</u> and susceptibility to microcystin toxicity; Toledo/Haller
- Physiological, growth and survival of juvenile <u>yellow perch</u> and <u>walleye</u> exposed to toxic cyanobacteria; OSU/Ludsin

