The Heidelberg Tributary Loading Program: Keeping a Finger on the Pulse of Ohio's Watersheds

Laura Johnson

Why monitor rivers?

Reflects health of entire system upstream, and explain symptoms downstream

Heidelberg Tributary Loading Program

Load

Mass/time Metric tons/year

Concentration

Mass/H₂O volume mg/L

Discharge

X

 H_2O volume/time m^3/s

What is the average concentration?

Flow weighted = Load mean concentration Discharge

 Add up all samples, divide by number of samples

0.339 mg/L

Calculate average with even time intervals, i.e., time weighted

0.306 mg/L

What you would experience if living in the river over time

Calculate average with even flow intervals, i.e., flow weighted

0.377 mg/L

If you captured all the water in a bucket and sampled that

Maumee is the largest tributary to any of the Great Lakes

Total Phosphorus
Annual Flow-Weighted Mean Concentration

Dissolved Reactive Phosphorus Annual Flow-Weighted Mean Concentration

Maumee River trends

- Total P has decreased slightly over time
- Dissolved P has increased almost 2 fold since the mid-1990s
- Do we see this pattern elsewhere?

How can we compare across watersheds without long-term data?

Comparing watersheds 5 year average

Why are there differences in concentration?

Conclusions

- The return of algal blooms to Lake Erie corresponds to increased dissolved phosphorus from primarily agricultural watersheds
- Using flow-weighted mean concentration will allow us to compare to targets normalized for variation in watershed size and weather
- Dissolved P concentrations among HTLP monitored watersheds were highest at Grand Lake St Marys
 - A history of overapplication of manure
- ...and lowest in watersheds with less agriculture and sandier soils
- Dissolved P in Lake Erie watersheds comes from current agricultural practices → commercial P fertilizer application, rotational no-till
 - To reduce current loads efforts should be focused on reducing P stratification and nutrient management
 - To prevent legacy P problems, efforts should be focused on better management and application of manure

Heidelberg Tributary Loading Program – Current Sponsors

Sponsors of Current Research Projects

Lake Erie Commission

