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Subsurface drainage is known to adversely impact the water quality and contribute to the 

formation of harmful algal blooms (HABs). In early August of 2014, a HAB developed in 

the western Lake Erie Basin and resulted in over 400,000 people being unable to drink 

their tap water. HAB development is aided by excess nutrients from agricultural fields, 

which are transported through subsurface tile and enter the watershed. Compounding the 

issue, the trend has been to increase the installation of tile drains in both total extent and 

density. Due to the immense area of drained fields, it is necessary to establish a cost-

effective technique to monitor tile installations and their associated impacts.  

This thesis aimed at developing an automated method in order to identify subsurface tile 

locations from high resolution aerial imagery by applying an object based image analysis 

(OBIA) approach utilizing eCognition. This process was accomplished through a set of 

algorithms and image filters, which segment and classify image objects by their spectral 

and geometric characteristics. The algorithms utilized were based on the relative location 

of image objects and pixels in order to maximize the robustness and transferability of the 

final rule-set. These algorithms were coupled with convolution and histogram image 
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filters to generate results for a 10km² study area located within Clay Township in Ottawa 

County, Ohio.  

The eCognition results were compared to previously collected tile locations from a 

concurrent project that applied heads-up digitizing. The heads-up digitized locations were 

used as a baseline for the accuracy assessment. The accuracy assessment generated a 

range of agreement values from 67.20% - 71.20%, and an average agreement of 69.76%.  

The confusion matrices calculated a range of kappa values from 0.273 - 0.416 with an 

overall K value of 0.382, considered fair in strength of agreement. This thesis provides a 

step forward in the ability to automatically identify and extract tile drains and will assist 

future research in subsurface drainage modeling.    
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Chapter 1 

 

1 Introduction  

 

In August of 2014, a large harmful algal bloom (HAB) developed in the western Lake 

Erie Basin that resulted in over 400,000 people in the greater Toledo, Ohio area being 

unable to drink to their tap water (Figure 1.1). Harmful algal blooms are not uncommon 

in Northwest Ohio and have serious health and economic impacts on the community. In 

an open letter to federal officials Toledo’s Mayor, Michael Collins, addressed the 

emergency with this statement. 

“In the early morning hours of Saturday, August 2
nd

, until the morning of Monday, 

August 4
th

, a half million residents of Northwest Ohio and Southeast Michigan 

experienced the unthinkable; they were told not to consume tap water. While the water is 

now safe to consume, danger remains lurking off our shoreline in the form of harmful 

algal blooms (HABs). Eleven million people rely on Lake Erie for their water supply; 

millions more receive water from other bodies of water that face the same potential of 

being impacted by HABs.”  

Mayor Collins goes on to explain that these events have increased in the recent years, and 

calls upon the President to help protect the nearly 84% of United States’ fresh water 

supply that rests in the Great Lakes (Collins, 2014).  
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Figure 1.1 Lake Erie Algal Bloom in August, 20141(NASA, 2014) 

 

Agricultural fertilizers and nutrient applications are speculated to play a major role in the 

development of the HABs, because the nutrients that are designed grow healthy crops 

also aid in the growth of the harmful and nuance algae.  The nutrients may be carried off 

of the fields by means of surface or subsurface drainage, but for this thesis the main 

concern was subsurface drainage, also known as drainage tile or tile drains.  

It is important to investigate subsurface tile because the exact extent to which these 

systems contribute to HABs is unknown. Secondly, monitoring tile drainage runoff is 

extremely difficult, due to the fact there has been little data collected on where tile have 

been installed, fixed, removed, and even less information on where tile have been 

previously installed (Fausey et al., 1995; Jaynes and James, 1987; OEPA, 2011).   

This thesis investigates the history of water management with an emphasis on subsurface 

tile drainage, the environmental impacts associated with subsurface drainage, previous 
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methods of tile detection and extraction, and an attempt to develop a systematic approach 

that improves on previous methods of tile drain detection and extraction.  

 

1.1 History of Water Management 

 

For millennia mankind has had success at managing the flow of water through drainage 

systems. Archeologists have evidence of many civilizations controlling water flow 

through various practices over human history. The Greeks and Egyptians used surface 

drainage techniques to remove excess water from their land roughly 2500 years ago. The 

Romans were the first to utilize open and closed drainage systems to remove stagnate 

surface water, and these methods were the dominant means of drainage for more than a 

1000 years (Donnan, 1976). Weaver (1964) suggested that clay tile systems, similar in 

style to those used today, have been utilized for over 2000 years. However, the first 

documented use of clay tiles was to drain excess water from the garden of the Monastery 

of Maubeuge in France built in 1620 (Weaver, 1964).  

The practice of draining water from the land has continued to become more popular 

across the globe and throughout the mid-nineteenth century expanded rapidly into an 

industry. The first clay tile machine was invented and patented in England around 1843, 

and unofficially started the tile industry (Donnan, 1976). As Europeans began to migrate 

to America, they slowly began to implement their methods of drainage. Overall, the 

United States saw very little man-made drainage in its early stages, and the land that was 

drained was only very small and isolated plots. However, there were some important 

early attempts on the large scale to convert inhabitable wetlands to more functional land. 
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For example, the Colony of South Carolina passed an act in 1754 to drain the Cacaw 

Swamp. Another attempt in 1763, by George Washington, was to drain the Dismal 

Swamp that extended from Virginia to North Carolina (Beauchamp, 1987). Aside from 

these attempts, few water management projects were conducted in the United States until 

the 1850’s.  

After many years of debate and pressure from the public, congress recognized the issue 

of water management and passed the Swamp Land Acts of 1849 and 1850. Collectively 

they were the first federal legislation to be passed relating to draining of the land and 

gave fifteen states roughly 64 million acres of land on the condition that the money 

generated from the sale of the land would be used on water management projects 

(Beauchamp, 1987). The management projects were essential for these states to reclaim 

the swampland.  

 

1.2 Subsurface Tile Drainage  

 

The first material used for subsurface drainage was clay tile and were made by hand-

rolling the clay and then baking it in a kiln. This process, along with hand digging the 

holes for the tile to be put in the ground, was tedious and back-breaking. There were 

some advancements in technology and manufacturing during the late 1800’s and early 

1900’s, but still was expensive and time consuming for farmers to implement. It was 

estimated that even with a two man team, this method would only allow 20 to 30 feet of 

clay tile to be installed a day (Fouss and Reeve, 1987). 
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 However, a major breakthrough occurred in the 1960’s with the booming plastics 

industry, the corrugated plastic tile (Figure 1.2). Corrugated plastic was superior to tile 

and other tile alternatives in many ways. First, it was incredibly light weight: 250 feet of 

plastic weighed only 80 pounds as compared to about 2,000 pounds of the same length 

and width of clay tile (Fouss and Reeve, 1987). Secondly, the polyvinyl and polyethylene 

plastic was incredibly strong, due to the structure of the walls, but also flexible enough to 

be easily bent and moved. Both the weight and the malleability of the plastic tile made it 

much cheaper than any of the other substitutes. The prices dropped and demand grew 

over the next twenty years, and by 1983 an estimated 95 percent of the subsurface 

drainage systems installed throughout the entire United States were corrugated plastic tile 

(Schwab and Fouss, 1985). 

 
Figure 1.2 Corrugated Plastic Tile1 (Niagara Block, 2014) 

 

The advancements in plastic tubing coupled with the advancements in machinery caused 

a revolution in the industry (Figure 1.3). High speed plows and trenchers that are capable 

of digging, installing, and covering tile at a rate of 80-150 feet per minute is now 

common practice (Fouss and Reeve, 1987). The speed at which these machines could 



6 

 

operate is faster than most farmers were able to control, so another major advancement 

was added to plows, a laser guided controller (Fouss et al., 1972). Agricultural drainage 

practices are continually being updated and refined, and because of this, subsurface tile 

systems are constantly being installed to fields in both quantity and density.  

 

 
Figure 1.3 Tile Plow1(Reynolds, 2014 p.4) 

 

The reasons for installing tile drainage systems are clear and the benefits fall into two 

broad categories, water management practice and land improvement technique. As a 

water management tool, tile drains remove excess surface water, reduce risk, mitigate 

illness and disease caused by stagnate water, and reduces runoff and erosion. The benefits 

to the land are the removal of excess salts, better crop protection against pests, and 

increased crop productivity (Fausey et al., 1987). Subsurface tile drainage has allowed 

the Midwest region of the United States to thrive, and as a result, continue to generate 

very productive and abundant crops for the entire world. Fausey et al. (1995) explain that 

the Great Lakes and the Corn Belt States have over 20 million hectares of land that is 

currently drained via subsurface drainage systems, and accounts for over a third of the 

country’s cropland (Figure 1.4).  
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However, over the last few decades many have begun to study the adverse impacts that 

this practice has on the environment and water quality. More specifically, how do 

subsurface drainage systems transport nutrients, nitrogen (N) and phosphorus (P), into the 

watershed and what are the associated impacts? (Ahiablame et al., 2011; Alexander et al., 

2008; Dils and Heathwaite, 1999; (Fausey et al., 1995) Gentry et al., 2007; King et al., 

2014; McDowell and Sharpley, 2001; Smith et al., 2014).  

 
Figure 1.4 Extent of Corn Belt and Great Lakes1(Holtgrieve et al., 2012 p.152) 

 

1.3 Problem Statement and Objectives 

 

As stated above, tile drainage systems provide many benefits both ecologically and 

economically, but recent studies have shown that drainage tile have negative effects as 

well. These adverse impacts are a result of excessive nutrient build-up on the soil, mainly 

nitrogen and phosphorus, that runoff directly into the watershed. The executive order of 

1977 was the first attempt to monitor the impacts that subsurface drainage has on the loss 
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of wetland, and has subsequently laid the foundation of water quality and management 

research (Fausey et al., 1995). For example, much of the excess nitrogen from cropland in 

the Midwestern states has ended up in the Mississippi, which resulted in hypoxic 

conditions in the Gulf of Mexico (Figure 1.5). The impacts are hard to quantify, because 

there is a lack of prior knowledge in regards to tile quality and quantity (Jaynes and 

James, 1987). Another major concern is the loss of phosphorus from cropland that is 

transported into the watershed, which can wreak havoc on the environment and water 

quality (Foy and Withers, 1995; McDowell and Sharpley, 2001; Sharpley et al., 2000).   

 
Figure 1.5 Hypoxic Conditions in the Gulf of Mexico1(NOAA, 2014) 

 

A system of detecting and monitoring tile drains would allow officials to better predict 

and mitigate any adverse environmental or economic impacts. More accurate data would 

also assist farmers in improving their best management practices. These techniques 
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would allow farmers to be able to identify broken or missing tiles, which would lead to 

an increase in land productivity.  

Previous research has been successful at determining the most likely drained areas 

through satellite imagery based on soil characteristics and land cover. Others studies have 

been able to extract tile locations through small field-size studies with relatively low 

accuracy (Brown, 2013; Dezső et al. 2012; Naz and Bowling, 2008; Northcott, 2000; 

Reynolds, 2014; Sugg, 2007). However, no research has been able to combine these 

methods into one approach at the scale needed. This research attempts to create an 

approach to automatically identify agricultural fields and extract tile drain locations 

through the use of high-resolution satellite imagery and object based image analysis. 

 

Objectives: 

1. Develop a working algorithm in the OBIA software eCognition.  

 

2. Apply the algorithm in order to accurately and cost effectively extract tile drain 

data. 
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Chapter 2 

 

2 Literature Review  

 

Subsurface drainage systems have a long history and can result in monumental change to 

the physical landscape, as seen in the transformation of The Great Black Swamp to 

highly productive farmland in roughly a century (Kaatz, 1955). More recently, research 

has focused on the environmental implications of tile drains and drainage practices, but 

the lack of geographic information regarding the tile make any predictions about the 

extent of environmental degradation incredibly difficult. The early method of tile 

detection was through tile probing, which is an in-situ process where an individual tests, 

with a metal probe, for the tile location in a field. Tile probing is time intensive, 

physically demanding, and only practical on field-sized sites. The advancements in 

computing and remote sensing techniques have created a new avenue for detecting tiles 

via satellite imagery and high-resolution aerial photographs.  

 

2.1 The Great Black Swamp 

 

One particularly harsh swampland located in Northwestern Ohio was called The Great 

Black Swamp (Figure 2.1). The Great Black swamp covered an area of 1,500 square 

miles extending from the Western Lake Erie Basin well into Indiana (Kaatz, 1955). Kaatz 
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describes the area as “one continuous region of standing water or so wet as to ooze water 

when walked upon in all seasons except the very driest”. Naturally, the areas with the 

most efficient natural drainage were developed first, but this left large a portion of NW 

Ohio undeveloped through much of the nineteenth century. Efforts to drain the area with 

ditches and furrows were employed, but were not effective enough to remove all the 

excess water. Subsurface tile drainage systems were a necessity, and the tile industry that 

recently migrated to the US began to thrive in the late 1800’s. The Black Swamp region 

saw a surge of tile manufacturing facilities by the end of the 1870’s totaling over fifty in 

the region alone (Kaatz, 1955). The tile drain demand continued and over only a few 

decades converted nearly one million acres of unusable swampland to one of the most 

productive agricultural lands in the world (Fausey et al., 1995). 

 
Figure 2.1 The Great Black Swamp1(The Black Swamp Conservancy, 2014) 
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2.2 Environmental Impacts 

 

There has been a great deal of research conducted on the transportation of nutrients 

originating from agricultural fields that ultimately affect water quality. Since subsurface 

drainage has become the dominant means of removing excess water from cropland, 

recent environmental studies have begun to focus on the impacts drainage tile pose to 

water quality.  

An early investigation focused on subsurface tile drainage was conducted by Kladivko et 

al. (1991). This research examined the influence tile spacing had on the overall water 

quality, measured through water runoff, nutrient loading, and pesticide transport. This 

research concluded that narrower spacing (6 meters) resulted in a lower water quality 

than tiles with larger spacing (12 and 24 meters). However, trends show that farmers are 

installing tile at increased quantity and density, which could result in even more stress to 

the ecosystem and poorer water quality (OEPA, 2011).    

Dils and Heathwaite (1999) investigated the role of subsurface tile with regards to the 

transport of phosphorus (P). The P lost through subsurface tile represented a very small 

percentage of the total P needed for healthy crops, so from a farmer’s economic 

perspective this has a minimal impact on their harvest or budget. However, this small 

percentage may be detrimental to the health of the watershed. The authors also made the 

conclusion that subsurface tile systems create networks that connect vast areas of 

agricultural land and aggregate all of the phosphorus lost into the same watershed. The 

authors acknowledge that there is a lack of locational information regarding the large tile 

networks and the impacts at the network level are difficult to quantify.  
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McDowell and Sharpley (2001) studied and quantified the amount of phosphorus lost 

from varying agricultural soil types. These soils have built-up concentrations of P from 

continued applications of fertilizers, and the high concentrations of P eventually percolate 

through the soils and are transported through tile drains. The main focus was on the 

concentration levels of fertilizer applications and the impact of different soil 

characteristics impact on P lost through drainage.  

Gentry et al. (2007) examined the transport of phosphorus in agricultural areas by 

subsurface tile throughout three study areas in East-Central Illinois, and investigated how 

precipitation events impact the flow rate of subsurface tile and subsequently the 

transportation of P. The authors concluded that during extreme precipitation events tile 

played less of a role than during dry years. This is due to the surface runoff that occurs 

during a large storm, which quickly drains off of cropland. However, the P lost due to the 

surface runoff will likely flow into a drainage ditch, stream, or other water bodies, and 

eventually work its way into the watershed. This study also observed that after the first 

flush, the initial surface runoff of a precipitation event, P concentrations were found to 

remain high, unlike nitrogen (N) or herbicides. This means that P may remain in soils and 

concentrate over a long period of time and exemplifies the complexity of tile drainage 

effects on differing nutrients, chemical compounds, and their transportation.  

Recent studies have looked explicitly at the impacts of P loss through tile drainage and 

the potential contribution to harmful algal blooms (HABs). Smith et al. (2014) generated 

results that have contradicted previous findings, in regards to the influence of P loading 

from tile drainage. In agricultural fields within the St. Joseph River Watershed they 

calculated that tile drains produce between 25%-80% of the total P lost. This number is 
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much higher than what was previously thought, which highlights the importance and 

influence subsurface tile drains may have on P transportation. King et al. (2014) 

conducted a study over an eight year period to investigate a watershed in Central Ohio 

and found that P concentrations significantly exceeded EPA proposed recommendations 

for the study area. These findings demonstrate that the high phosphorus concentrations 

are likely to play a major role in the development of HABs in Lake Erie. 

The Ohio Lake Erie Phosphorus Task Force Report concluded that at the current 

estimated P totals of 0.6 to 1.1 kg/ha for cropland surrounding western Lake Erie Basin 

conditions are capable of producing algal blooms (Ohio Phosphorus Task Force, 2013). It 

is also recommended that spring P loading be decreased by 40% in order to reduce the 

degree and frequency of HABs. 

In a report by the National Center for Water Quality Research (NCWQR) (2011), where 

it is estimated 7% of the total P that enters Lake Erie was transported from the Maumee 

River from point source pollution. This means that nearly 93% of the total P that is 

deposited in Lake Erie is from non-point source pollution such as farm fields.  

Another survey conducted by the Great Lakes Protection Fund (2010) investigated 657 

agricultural fields with an average size of 25.2 acres in the Sandusky Watershed. This 

survey gives insight into the actual numbers of fields containing subsurface drainage. 

Nearly 91.5% of the fields surveyed contained some degree of subsurface tile coupled 

with 74.6% of field edges within 1000 feet of a watercourse (field ditch, stream, or river). 

The combined efforts of farm field surveys, research on nutrient transportation, and 

knowledge of HABs production, has laid the foundation for better water quality 
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management. However, without the knowledge of tile locations, average spacing, or 

density it is difficult to calculate the contributions to algal blooms as well as enforce any 

regulations at the watershed level, so a method of tile identification and extraction must 

be created.   

 

2.3 Previous Methodologies in Tile Detection 

 

Verma et al. (1996) attempted to map tile lines within Vermilion County, Illinois using 

color infrared (CIR) aerial photographs. Tile drains remove excess water from soil 

directly above the tiles faster than the soil in-between tiles, which creates spectral 

differences between the wet and dry soils that can be seen with the naked eye (Hoffer, 

1972). However, the aerial photographs must be taken during ideal conditions in order to 

generate the most effective results. The ideal conditions are two to three days after a 

rainfall of 2.54cm (Verma et al., 1996). The photographs were scanned and geo-

referenced using IDRISI in order to allow for geographically precise data manipulation. 

Then through applying various band combinations, the aerial photographs were analyzed 

to demonstrate each combination’s effectiveness. The bands utilized for this study were 

bands 1, 2, and 3, representing blue, green, and red. The best results were obtained 

through the product of band 2 and band 3, which was considered “excellent, and the 

quotient of band 2 and band 3, which was considered “good”. A classification scheme 

was produced using the combination, band 2 multiplied by band 3, and the study area was 

broken in three classes, wet, moist, and drained. An accuracy assessment was conducted 

using the tile probing method. Results showed that main lines were detected almost every 
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time on the first attempt. However, lateral lines were more difficult to detect due to their 

smaller sizes. This research demonstrated successfully that CIR photographs could be 

utilized in the detection of tile drains, but lack quantitative rigor in the results and 

accuracy assessment.  

 

Northcott et al. (2000) took a similar approach using CIR imagery and GIS layers (Soil 

properties and hydrologic features) to delineate subsurface tile systems in East Central 

Illinois. This process included scanning and geo-referencing aerial photographs and then 

overlaying the GIS layers to determine most likely areas where tiles would occur. The 

research utilized a technique called heads-up digitizing, which a user manually “draws” 

lines on a computer screen within the viewing window where the drains are located. The 

digitizing process creates shapefiles for each of the individual tile lines while maintaining 

their geographic properties, which are essential for any data analysis.  No formal 

accuracy assessment was undertaken for this research. The results produced a map of tile 

drains within a comparatively large study area. However, this process requires manually 

scanning through imagery to detect the variations in soil reflectance, and is too time-

consuming for larger study areas. 

Sugg (2007) investigated the extent of subsurface tile drainage to fill the void in data that 

has been spotty at best. This research shows that large scale attempts to collect 

information about tile drains have been conducted via census surveys by the government 

but have been eliminated resulting in a data gap. Sugg states “no truly comprehensive 

information on the status of agricultural drainage has been published since the 

aforementioned 1987 USDA report” (Sugg, 2007, p.2). This study examined eighteen 
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states across the United States to generate what areas would most likely contain 

subsurface tiles and what areas could benefit the most with the installation of new tile 

drains. The process was undertaken by overlaying the land cover classification from the 

1992 National Land Cover Dataset (NLCD), soil information from USDA’s State Soil 

Geographic Database (STATSGO), and county-level Soil Survey Geographic Database 

(SSURGO). The results were generated specifically through the five poorest drained soil 

types and row crop data, but the methodology makes two assumptions. First, that 

subsurface drainage is the only drainage practice used in these locations, and secondly 

that subsurface tile systems are not in locations with better natural drainage.  

Brown (2013) extended Sugg’s method by obtaining and comparing eight multi-scale and 

multi-temporal GIS layers over Central Minnesota. The study compiled land use data 

from the NLCD (2001) and NASS (2008), Soil and hydrology properties from SSURGO, 

and slope information from the United States Geologic Survey (USGS) to predict most 

likely locations that contain artificial tile drainage.  

Naz and Bowling (2008) developed an automated process of detecting tile drainage from 

remote sensing data in Tippecanoe County, Indiana. The research applied a decision-tree 

classification (DTC) methodology to examine various GIS layers, including land cover, 

soil drainage properties, and slope. The imagery was then processed using a filter 

technique, spatial convolution, in order to divide the image and to enhance the edges 

between high and low frequency areas. The results of the filters were then classified into 

two classes, tile and non-tile, based on the density slice classification. An accuracy 

assessment was conducted with previously known tile locations within the study area. 

The Hough transformation produced the most accurate results and the least amount of 
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discontinuity between tile lines, which in turn reduces the amount of user-time spent 

connecting tile lines. Another study by Naz et al. (2009) utilized the same methodology 

of DTC and image processing tools to carry out research in another study area in West 

Central Indiana. The replicability of this study is important to demonstrate that 

techniques for tile detection can be implemented in various geographic locations.    

Thompson (2010) continued the work of others within this field through the use of 

National Agricultural Imagery Program (NAIP) data and performing an unsupervised 

classification. Next, the author applied an edge detection technique to identify sharp 

contrast in the data in order to detect tile locations. Finally, he applied the heads-up 

digitizing process to generate shapefiles of the tile drain locations within Wood County, 

Ohio. The shapefiles were compared to geo-referenced tile drain blue prints to measure 

accuracy. A comparable methodology was used by Andrade (2013) to investigate the 

ability of mapping tile drain locations in the Eagle Creek Watershed in Iowa. This 

research also took into account 10-day rain averages to determine likely locations of tile 

drains, because the ability to utilize remotely sensed images is highly dependent on 

precipitation amounts just prior to the collection of the imagery (Andrade, 2013).  

 

2.4 Object Based Image Analysis & eCognition 

 

Over the last couple decades a transition has been occurring in the field of remote 

sensing. Publications such as What’s Wrong with Pixels by Blaschke and Strolbe (2001), 

sum up the dissatisfaction with the limitations of pixel-based image analysis on very high 

resolution imagery. This new phenomenon started with emergence of easily accessible 
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high resolution images, and is most effective on imagery with spatial resolutions under 

five meters (Hay and Castilla, 2006). The main processing tool of object based image 

analysis (OBIA) is segmentation, a technique that divides an image into sections or 

segments similarly to the way the human brain would process an image. A segment is a 

region that is homogenous in at least one characteristic (Blaschke, 2009). 

The main advantages of OBIA over pixel-based:  

1. The segmentation process most resembles the way humans organize and 

comprehend images. 

2. Image objects are less affected by the modifiable aerial unit problem (MAUP) 

than their pixel-based counterpart.  

3. OBIA utilizes object features (shape, texture, and spatial relations) beyond just 

the spectral properties. 

4.  This technique dramatically reduces the computational load placed on an 

operating system. 

5. OBIA software has become more powerful and more affordable (eCognition).  

(Hay and Castilla, 2006) 

This is not a comprehensive list of advantages, but broadly covers the key points 

important for this research. Since the early 2000’s the number of scientific publications 

using OBIA has increased dramatically in a wide variety of disciplines (Blaschke, 2009). 

Krause et al. (2004) applied OBIA on aerial photographs to detect changes in both time 

and scale on mangroves in Northern Brazil. OBIA software has been successful in 

mapping hydrologic soil properties demonstrated by Corbane et al. (2008). Thomas et al. 
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(2003) successfully extracted land-cover/ land-use (LC/LU) data from very high 

resolution imagery, less than one meter, and estimated storm-water runoff in Scottsdale, 

Arizona. One of the most important aspects of OBIA methodology is the ability to 

develop rule-sets that may be transferable. This transferability was demonstrated by 

Schopfer and Moller (2006) and Walker and Blaschke (2008), and in theory allows a 

standardized set of rules or parameters to be developed and applied across different 

spatial and temporal scales. However, OBIA techniques at this point are still highly 

dependent on the dataset. These are only a handful of examples of the work being done 

with the advancements with OBIA. For a comprehensive list of examples see Blaschke 

(2009).  

At the beginning of the OBIA craze there was no single best software in order to 

accomplish the sophisticated computational tasks needed to process high resolution 

imagery. The software previously available was not user-friendly and was expensive. 

However, in late 2000 Definiens Imaging GmbH developed software, eCognition, to 

address the growing demand for OBIA and the ability to analyze geometric properties 

and spatial relations of pixels (Flanders et al. 2003; Trimble, 2014).  eCognition has 

proven to be a popular software for conducting classification trees and rule-based 

research as demonstrated by Flanders et al. (2003) who conducted research on cut block 

delineation in Calgary, Canada to Dezső et al. (2012) who applied multiple segmentation 

techniques with eCognition to delineate land use classifications. 

 There are two broad segmentation methodologies, merge-based or cut-based. In merge-

based, or the bottom-up approach, the user starts at the pixel level and through 

parameters, generated by rule-sets, aggregates the pixels into groups of similar 
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characteristics. This grouping process is continued until the classification is complete. 

Dezső et al. (2012) demonstrated the flexibility of the software and the many different 

techniques available to achieve the same result. Their research applied the sequential 

linking, best merge algorithm, and graph based merge to effectively show a variety of 

bottom-up techniques. The second process is called cut-based, or top-down approach, 

which as expected, works in the reverse of the cut-based method. The cut-based method 

starts with the entire image as one segment and then through iterations continually 

subsets the image into many smaller segments until the image is classified appropriately. 

Three techniques available that utilize this approach are minimum mean cut algorithm, 

minimum ratio cut algorithm, and normalized cut algorithm (Dezső et al. 2012).  

Reynolds (2013) used the eCognition software to develop rule-sets in order to 

automatically detect tile drains systems over five independent fields using high resolution 

aerial photography of Northwest Ohio. Following the detection, an extraction technique 

was implemented within the eCognition software to transfer the data from raster to a 

vector format. The method was successful in the overall goal of detecting and extracting 

tile drain locations. However, there are two issues with this research that must be 

addressed: the study only investigated an individual field at a time, and the rule-sets were 

changed due to localized variations. The rule-sets developed in this study are extremely 

difficult to transfer to different geographic locations and scales. A more rigorous set of 

parameters must be established that can accommodate for local variation and spatial 

differences.    

eCognition has been well established as an excellent tool to accomplish OBIA research, 

as seen through previous studies and the rapid growth of peer-reviewed journal article 
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publications over the last twenty years (Beck et al. 2013; Blaschke, 2009; Definiens, 

2009; Dezső et al. 2012; Flanders et al. 2003; Reynolds, 2014). With the newly released 

eCognition software and easily accessible high resolution imagery, it is possible to fill the 

void in both knowledge and methodology by developing a rigorous technique of 

automatically detecting and extracting tile drains through high resolution aerial 

photography and satellite imagery.  
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Chapter 3 

 

3 Methodology 

 

3.1 Study Area 

 

This research attempted to develop a replicable rule-set for extracting field locations, 

containing tile drainage systems, as well as the underground tile drainage structure. The 

study area was a subset of Clay Township, which lies within Ottawa County, Ohio 

(Figure 3.1). This area was chosen to correspond to a concurrent research project, under 

the supervision of Dr. Kevin Czajkowski, Mapping Drain Tile and Modeling Agricultural 

Contribution to Nonpoint Source Pollution in the Western Lake Erie Basin at The 

University of Toledo. Another important set of characteristics of this study area are the 

proximity to Lake Erie and that the landscape is dominated by agriculture fields. These 

two features are crucial for this research because they connect the impact of agricultural 

runoff and harmful algal blooms. Finally, the large variations contained in this study area 

make for a more robust rule-set that is able to be reproduced in other geographical 

locations. 
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Figure 3.1 Study Area in Clay Township, Ottawa County, Ohio 1 
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The image above shows the extent of the study area chosen for this research. The first 

subset map is of the state of Ohio and the grey portion is Ottawa County (bottom left). 

The second subset map is of Ottawa County with the grey portion containing Clay 

Township (bottom middle). The final subset map displays the extent of Clay Township 

and contains the previously collected hand-digitized tile drain information for this area 

shown in red. This map contains the outline of the study area for this research (bottom 

right). The main image is the OSIP high resolution aerial image of the study area, shown 

in true color at a scale of 1:30,000 (top). This imagery was utilized throughout the 

development of the algorithm process.  

 

3.2 Imagery  

 

High-resolution imagery available for analogous research is available freely at The Ohio 

Statewide Imaging Program (OSIP) and the National Agricultural Imagery Program 

(NAIP). Images from OSIP are available in both red, green, blue (RGB) images and color 

infrared (CIR) at one foot and one meter resolution respectively. However, for this 

research, the best results were generated from RGB imagery from OSIP (figure 3.2). A 

concern with OSIP imagery is the lack of metadata. There is no information contained in 

the image to describe the time and conditions of when the imagery was captured. This is 

critical for identifying tile drainage since, as stated in section 2.1, the conditions needed 

to detect tile are uncommon. It is known that the imagery has been collected during the 

leaf-off period, from March to April, and the majority of fields are bare soil with the 

exception of winter crops.  
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Figure 3.2 Example of OSIP Imagery with RGB Bands displayed as true color1 

 

The images examined contain three bands red (R), green (G), and blue (B), and each of 

the bands are imported as a separate layers within eCognition. The software is capable of 

analyzing characteristics of each layer, individually or any combination of the three, in 

order to extract the pertinent information needed.  
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3.3 Software 

 

3.3.1 ArcGIS   

 

ArcGIS is an ESRI product package that contains the software ArcMap 10.2, which was 

utilized throughout this project. This was the software needed to complete the hand-

digitized mapping of the previously collected tile locations from the research project 

Mapping Drain Tile and Modeling Agricultural Contribution to Non-point Source 

Pollution in the Western Lake Erie Basin. ArcMap 10.2 was also the main component 

used in conducting the accuracy assessment, in which the results from the eCognition 

rule-set were validated with the previously collected data.  

 

3.3.2 eCognition  

 

eCognition is a software currently owned by Trimble Navigation Ltd, and is essential for 

this object-based research. In chapter 2, the importance of OBIA was highlighted and 

many examples of how this technology has been applied were cited. The process uses 

various segmentation and classification techniques to detect spatial, spectral, and 

geometric differences between pixels and image objects. The software also allows the 

user to develop rule-sets that run linearly from one algorithm to the next. This is 

important for non-experts and makes for a more seamless and user friendly interface. 

Another important aspect of eCognition is the ability to export the data in a vector format, 

which is easily transferable to ArcMap and other GIS software.  
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3.4 Hand-Digitized Lines 

 

Dr. Czajkowski’s project mapped an estimated 2,000 agricultural fields that contained tile 

drains, by utilizing the heads-up digitizing approach on high-resolution aerial imagery 

within ArcMap 10.2. This process was completed by manually scanning through images 

to identify fields containing tile and drawing individual polylines for each tile visible in 

every field surveyed. The tile lines were observed by the contrast between wet and dry 

soil, which typically follows one of two patterns, checkerboard or fishbone (Figure 3.3-

3.4). However, fields may also contain random patterns that increase the difficulty of tile 

detection (Figure 3.5). Once a field has been confirmed to contain tile the technician used 

the edit toolbox to hand draw the tile lines in the viewing window. The hand-digitizing 

method is relatively simple when tile are clearly displayed on the viewing window, but 

the ideal conditions are rare and results may contain errors.  
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Figure 3.3 Checkerboard Tile Pattern1       Figure 3.4 Fishbone Tile Pattern 1 

 

   
Figure 3.5 Random Tile Pattern 1 
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The two major errors that occurred during the hand digitizing process were caused by 

fields that contained plow lines or fields exhibiting minimal variations in soil brightness. 

Plow lines are lines that are created after a tractor or combine crosses a field, and the 

markings left behind are nearly identical to the patterns of tile drains. One way to 

distinguish between plow lines and tile lines is the spacing between lines, because tile 

drains are normally spaced much further apart than the lines generated from farming 

equipment. However, when spacing of tile and plow lines are similar, around 10 meters, 

it is nearly impossible to differentiate. Another source of error occurred when a field 

contained minimal spectral variation. The human eye is unable to distinguish between 

areas of nearly identical brightness, and the lack of variation may result in misplaced or 

missing tiles.  

 

In order to overcome these errors, multi-temporal imagery was acquired to help 

determine difficult fields. The users compared multiple images and made use of color-

infrared imagery to draw tiles on a single field, while maintaining the integrity of the 

geographic information of the line. After all fields were hand-digitized they were checked 

for accuracy. This was accomplished by each field being validated by two separate 

technicians to ensure accuracy. The fields were judged on the total percentage of tile 

mapped per field. The project mapped roughly 2,000 fields, 500 per county, and each 

county was required to have an accuracy of at least 95%. Due to the high level of 

accuracy of this project, this dataset was used as a baseline in comparing the results of 

this thesis in the accuracy assessment.  
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3.5 Developing a Rule-Set 

 

The goal of this research was to develop a transferable and efficient rule-set, or 

algorithm, that successfully identifies agricultural fields that contain tile drainage 

systems, as well as the tile drainage network on each field. This was completed by 

identifying contrasting pixels of wet and dry soil that are indicative of tile drains. The 

process generated results that were the combination of prior knowledge and experimental 

style trial and error. However, the eCognition software contains over 130 algorithms that 

can investigate a multitude of object features characteristics; for a comprehensive list see 

Trimble (2012). Each algorithm contains a set of parameters that can be altered which 

affects the end result. That being understood, there are many routes to generate nearly 

identical results. This research aimed at developing a rule-set that was both efficient and 

accurate. Efficiency maybe overlooked in some research, but is essential when analyzing 

imagery measured in the gigabytes. Processing power and time is a major limitation 

associated with research using high-resolution imagery, and both of these were 

considered when the study area and the algorithms were chosen.  

 

3.5.1 Initial Segmentation  

 

The process begins with importing the high-resolution imagery, where each band is 

automatically given the names layer 1, layer 2, and layer 3, which correspond to red, 

green, and blue, respectively. For this project, the names were left in their default position 

for simplicity. This is done under the modify project window, where the user can create a 
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subset, add thematic layers, and manually edit pixel size. Once the image has been 

loaded, the process of developing a rule-set can begin. The first step needed for any rule-

set is an initial segmentation, which aggregates individual pixels into groups based on a 

scale parameter and their homogeneity. The primary segmentation used was a multi-

resolution segmentation, which is designed to minimize the average heterogeneity of the 

objects at a given scale. This algorithm converts the image from over 110,000,000 pixels 

to 142 image objects, or homogeneous group of pixels, and makes the image much easier 

to process. Each image object is shown with a blue outline in figure 3.6. 
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Figure 3.6 Initial Multi-Resolution Segmentation1 

 

3.5.2 Brightness Interval Classification 

 

The next step is to classify each of these 142 objects into a brightness interval, a range of 

brightness values, in order to separate out agricultural fields from non-agricultural fields. 

The brightness values are generated through the calculation below (Equation 3.1): 
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1Equation 3.1 Brightness Algorithm (Trimble, 2014 p. 236) 

 

 The brightness intervals created are as follows: ≥200, ≥190, ≥180, ≥170, ≥160, ≥150, 

≥140, ≥130, and ≤ 130.  It is important to run the classification algorithm in this order 

because the classifications are based on unclassified pixels. Using a top-down approach 

effectively classifies all image objects without overlap or reclassification. Each 

brightness interval represents a range of brightness values, and for simplicity, the ranges 

are called by the name of the brightness interval, which represent all values that fall 

within that range. For example, brightness interval 190 represents any brightness value 

from 190-199, and brightness interval 180 represents any brightness value from 180-189, 

et cetera.   After each brightness interval has been classified, the copy map tool is applied 

to create a new map for each brightness interval. This step allows for the reclassification 

of each interval to be undertaken individually, and assists in the processing time required 

to perform more complex tasks.  
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3.5.3 Image Filtering  

 

After the brightness intervals are separated, the next step is to apply a series of image 

filters to each interval. The first image filter is a histogram filter contained under the 

Layer Normalization algorithm’s menu. The histogram process normalizes the image by 

stretching the values to incorporate the entire pixel value range based on the histogram of 

the selected image (Figure 3.7). This process essentially highlights the differences 

between pixels by reducing the possible range of values. 

 
Figure 3.7 Histogram Filter1(Trimble, 2014 p. 135-136) 

 

Another image filter utilized in this research is the Convolution Filter, which is designed 

to minimize the local variation. This is completed by selecting a kernel size, a specified 

group of pixels in the shape of a square, and then recalculates all the pixels sampled to 

the average resulting in a smoother image. For this research, the algorithm applied was 

the Gaussian Blur, which expands the simple convolution filter to generate the new pixel 

value instead of the average (Equation 3.2). The Gaussian Blur is a popular blurring 

function that helps eliminate noise and reduce processing time (Figure 3.8).    
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Equation 3.2 Convolution Filter Algorithm1(Trimble, 2014 p. 133) 

 

 
Figure 3.8 Gaussian Blur1(PublicWiki, 2010) 

 

The final filter was applying the convolution filter on the histogram layer. This 

maximized the difference between each pixel within the image, and then smoothed those 

variations out over a 9x9 kernel. The image filters are essential for this research because 

it highlights the contrasts between the wet and dry soils at the pixel level, but then 

reduces the tiny variations between pixels and greatly improves the processing ability. 

The image filter processes is below shown in figure 3.9-3.11. These figures demonstrate 

the importance of each filter and show how each affects the appearance of field tile. 
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Figure 3.9 Histogram Filter1 

 

 
Figure 3.10 Convolution Filter1 
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Figure 3.11 Convolution Filter on Histogram1 

 

3.5.4 Re-segmentation of the Brightness Intervals 

 

The next series of steps involves re-segmenting each brightness interval based on the 

same multi-resolution segmentation parameters as the original except the scale and layer 

weights. Each class was re-segmented at the parameter scale of 10, in order to ensure that 

each brightness interval re-segmented independently (figure 3.12). Another difference on 

this segmentation is that the image filters are now included in the layer weights. A closer 

look at one field helps demonstrate the true size of the new segmentation. These are 

displayed at the field scale (figure 3.13) and tile scale (figure 3.14). These small image 

objects are the building blocks for the new scheme and through their specific properties 

are able to classify the image into two classes, Tile or Non-Tile.  
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Figure 3.12 Re-Segmentation of the Study Area1                     
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Figure 3.13 Re-Segmentation at Field Scale1 
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Figure 3.14 Re-Segmentation at Tile Scale1 

 

3.5.5 Tile Classification 

 

The final step in the segmentation and classification section is to classify each brightness 

interval’s newly segmented image objects into one of the two classes. This process was 

the most difficult, because the image objects have an insurmountable amount of localized 

variation. The soil profile above the tile has different spectral and geometric 

characteristics in every field, and many fields have dramatic variations that can occur 

within an area less than 100 feet. Campbell and Wynne (2011, p.19) wrote an analogy 

that exemplifies the obstacle within this research. The authors discuss the issue of trying 
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to develop a spectral signature for corn. Throughout the life cycle of corn it has many 

spectral signatures, and coupled with different soil types, shading, time the image was 

collected, etc. it can be nearly impossible to generate a single spectral signature for any 

one phenomena. In order to overcome this dilemma, this research made use of a pair of 

algorithms that examine image object characteristics relative to their neighbors. This 

results in a methodology that can be transferred over geographic locations and through 

time series imagery.  

This process was accomplished by a small series of steps. The first step was to remove 

any object that was larger than 10,000 pixels; this eliminated all fields that were not 

associated with the current brightness interval. The next step was to run the assign class 

tool on the convolution-histogram layer based on the values of the Border Contrast 

algorithm (Equation 3.3). This pixel-based algorithm examines the edge pixels of an 

image object and calculates the difference between neighboring pixels.  

 

 

Equation 3.3 Border Contrast Algorithm1(Trimble, 2014 p. 244) 
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The output of this algorithm is used to determine which class each image object is to be 

placed. Any image object that is less than 0 or greater than 10 is considered Non-Tile. 

The unclassified image objects are then processed by the next algorithm, Contrast to 

Neighbor Pixels (Equation 3.4). The Contrast to Neighbor Pixel algorithm continues the 

process of classifying Non-Tile objects by calculating the mean difference in contrast to 

the surrounding area of a given size.  

 

 

Equation 3.4 Contrast to Neighbor Pixels1(Trimble, 2014 p. 245) 

 

The results of this algorithm are then used to classify any unclassified object that has a 

value of less than 10 or greater than 125 as Non-Tile. The final step in this classification 

is to convert all remaining unclassified image objects to Tile. This series is done for each 

brightness interval independently (figure 3.15). This image shows a completely classified 

field with image objects classified as Tile in blue and Non-Tile Objects in grey. A clear 

systematic pattern of vertical and horizontal tile lines is visible.  
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Figure 3.15 Rule-Set Final Results displaying tile lines in blue and non-tile areas in 

gray.1 
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3.5.6 Merge & Export Shapefiles 

 

The final step in the rule-set is to merge all of the tile image objects into one image 

object. This step dramatically reduces the processing time by converting the more than 

100,000 image objects into one. An example of the full rule-set, for brightness interval 

130, is shown in figure 3.16. Once this has been completed for each brightness interval 

the merged image object is exported into a vector format, as smoothed polygons, suitable 

for ArcMap 10.2, and where the accuracy assessment can be conducted.  
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 Figure 3.16 Complete Rule-Set for Brightness Interval 130 1 
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3.6 Accuracy Assessment  

 

An accuracy assessment was conducted to evaluate the effectiveness of the eCognition 

rule-set through two methods, image object identification and tile verification. The first 

method was to determine the number of correctly identified image objects for each 

brightness interval. This process was conducted with a simple visual test, using the high-

resolution aerial imagery, and the results were classified as either correctly identified or 

incorrectly identified. These results allow for a simple method to calculate the 

algorithm’s ability to detect tiled fields in each brightness interval.  

 

The tile verification approach looked at the generated shapefiles from the eCognition 

rule-set and compared them to the previously collected hand-digitized tile locations. A 

buffer of ten feet is added around the hand-digitized polylines, because the rule-set was 

designed to detect the contrast in soil characteristics, not the subsurface tile lines 

themselves. This method of buffering was successfully demonstrated in Reynolds (2014). 

The buffered tile lines are clipped, using ArcMap 10.2, into their associated brightness 

interval, which allows for each brightness interval to be evaluated. For each brightness 

interval, which contains both the eCognition generated polygons and the hand-digitized 

buffered polygons; a set of 250 random points was created by applying the Create 

Random Points tool. A minimum boundary of 10 feet was determined per point, which 

means two points cannot be located within 10 feet of each other (Figure 3.17). This 
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method was adopted because some brightness intervals may only contain small total 

areas, and more points are unlikely to generate better results. The random points were 

only plotted within the image objects that contain both sets of tile line information. This 

is done because not all fields within the study area were hand-digitized. 

  
Figure 3.17 Random assessment points with ten foot buffer 1 
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The randomly generated points are evaluated and grouped into one of four classifications.  

1. Positive – points identified by both the hand-digitized and eCognition methods as 

Tile. 

2. Negative – points identified by both the hand-digitized and eCognition methods 

as Non-Tile. 

3. False Positive – points identified by the eCognition method as Tile, but the hand-

digitized method identified as Non-Tile. 

4. False Negative – points identified by the eCognition method as Non-Tile, but the 

hand-digitized method identified as Tile. 

A confusion matrix was created for each brightness interval as well as the entire study 

area. Next the Total Percent Agreement and Total Percent Error were calculated, by 

adding the sum of the Positive and the sum of the Negative points, and adding the sum of 

the False Positive and the False Negative points, respectively. Finally, the kappa statistic 

is calculated utilizing the Total Percent Agreement and the Total Percent Error (Equation 

3.5). 

 

Equation 3.5 Kappa Statistic1 (Corpus Linguistic Methods, 2013) 

  

Where Pr(a) is the relative observed agreement and Pr(e) is the expected agreement based 

on the hypothetical probability. Results can range from 0-1, with k=0 meaning there is no 

agreement and k=1 there is complete agreement.   
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Chapter 4 

 

4 Results 

 

4. 1 Image Object Identification  

 

The results from the image object identification method demonstrated the usefulness of 

each brightness interval to detect image objects that contain tile drains. These results 

were simply derived from the multi-resolution segmentation algorithm using the scale 

parameter of 1000 applied to each brightness interval independently. The initial 

segmentation of the study area, roughly 10.22km², was divided into 142 image objects 

(Figure 4.1). A more detailed look into the classification of these image objects is 

displayed in Table 4.1. 
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Figure 4.1 Brightness Interval Classification 1 

 

These results highlight the importance of brightness within the tile identification process. 

The vegetation brightness interval contains the largest number of image objects, but this 

is due to many localized variations in residential areas, such as yards, urban parks, small 

forested areas, etc. The 13 image objects containing tile are a result of the subdivision of 

four agricultural fields and one residential garden (Figure 4.2). For this reason, any image 

object with a brightness value under 130 was considered vegetation and was excluded in 

the final results. This rule-set is capable of accommodating vegetated areas, but will 

reduce overall accuracy dramatically.  



52 

 

 
Figure 4.2 Example of Vegetation Error1 

 

The three most important brightness intervals were 140, 150, and 160, which were 

dominated by image objects containing tile at 90.48%, 88.89%, and 87.50% respectively. 

The range 140-160 outlines the brightness values that most accurately identified 

agricultural fields and subsequently tiled areas. These brightness values contained 56 

image objects, and 50 of them contained tiled fields. The three brightness intervals made 

up roughly 73.50% of the total tiled image objects, and are vital for the rest of this 

process.  

The next series of brightness intervals which included 170, 180, and 190, began to see a 

decline in the accuracy of agricultural field detection. There were a total of 13 image 

objects in these three intervals, 9 in 170, 4 in 180, and 0 in 190. Of the 13 image objects 
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only one contained tile and was located in the brightness interval 170. These results show 

that image objects above the 170 interval tend to be too bright to be agricultural fields 

and are likely impervious surfaces. However, it should be noted that the algorithm did not 

detect any image objects with brightness values exceeding 190.   

The brightness algorithm generates similar results to the well-known normalized 

difference vegetation index (NDVI), but unlike NDVI, the brightness algorithm does not 

require the infrared band. One drawback of the brightness algorithm is that values are 

highly dependent on the scale parameter, because scale is essentially the resolution of 

each image object. This relationship means that the larger the scale parameter, the smaller 

the variation, and the smaller scale parameter, the larger the variation.   

Table 4.1 Image Object Identification 1

 

 

4.2 Results at the Individual Field Level  

 

The overall results for this study were pleasing because they eliminated the need for the 

user to manipulate the rule-set for every field in order to make it transferable, as was the 

case for Reynolds (2014). The three sample fields shown below allow for an in-depth 

discussion of the rule-set’s ability to detect tile drains at the field level (Figure 4.3-4.5). 

Brightness Interval
 Image Object Containing 

Tile

Percent Containing 

Tile %

 Image Object Not 

Containing Tile

Percent Not 

Containing Tile %

Total Number of 

Image Objects

Vegetation(<130) 13 20.63% 50 79.37% 63

130 4 40% 6 60% 10

140 19 90.48% 2 9.52% 21

150 24 88.89% 3 11.11% 27

160 7 87.50% 1 12.50% 8

170 1 11.11% 8 88.89% 9

180 0 0 4 100% 4

190 0 0 0 0 0

Bright Objects(>200) 0 0 0 0 0

Total 142
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Figure 4.3 Field Results Sample Field #11original image (left) classified (right)   

 

The image above demonstrates the strength of the algorithm to be able to detect tile 

drains in soil that exhibit minimal brightness variation. Low variations in agricultural 

fields are a common occurrence, but a successful rule-set must be able to accommodate 

this concern. Albeit, there are errors contained in the image, most notably edge effects 

and discontinuous lines, but the tile lines are clearly defined and visible to the naked eye. 

The algorithm even allows for the distinction of tile lines within areas that are extremely 

blurred, as seen in the eastern and the southwestern portions of the image.  
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Figure 4.4 Field Results Sample Field #21original image (left) classified (right) 

 

Sample field #2 highlights the threshold of the rule-set’s capability. The errors associated 

with this image are caused by overlapping issues including minimal variation in 

brightness, edge effects, and crop rows. The image does not exhibit a clear distinction 

between wet and dry soil except for the very middle of the image, where the algorithm 

correctly identified tile. One source of error is that the majority of the image is covered 

with diagonal crop rows, as seen in a northeast to southwest pattern. Image filtering has 

greatly reduced this error, but it is an inherit issue that still may cause confusion in both 

the automated algorithm and a human technician. However, the rule-set is still able to 

successfully detect tile lines for much of the field even under these difficult conditions.   
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Figure 4.5 Field Results Sample Field #31original image (left) classified (right)   

 

The third field demonstrated the strength of the rule to correctly identify a field, because 

there are little edge effect or crop row errors. This image was taken under nearly perfect 

conditions to display the full extent of the tile drainage system. The only major error was 

the omission of a part of a large vertical tile and some smaller horizontal lines in the 

southeastern portion of the image.  

These three sample fields represent the typical conditions and results generated from this 

rule-set when applied to high-resolution imagery. The tile line locations are successfully 

extracted even under imperfect or complex conditions, without any additional 

manipulation to the algorithm. The results generated give a clear picture of the extent, 
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spacing, and density of tile drains within a field, and demonstrated the ability of being 

reproduced over a large study area.   

 

4.3 Tile Verification 

 

The eCognition results were validated through a comparison to the hand-digitized tile line 

locations (Figure 4.6-4.7). The previously collected hand-digitized tile locations were 

validated by two separate technicians with a combined accuracy of 95% or greater. This 

highly accurate dataset allowed for the baseline to assess the eCognition rule-set. 
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Figure 4.6 Hand Digitized Lines for Study Area 1 
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Figure 4.7 Rule-Set Results for Study Area 

The tile verification was completed within ArcMap 10.2, through a process of clipping 

and dissolving both sets of shapefiles. This was completed in order to generate areas that 

contain both sets of data encompassed within an appropriate brightness interval (Figure 

4.8). The accuracy assessment was conducted by generating 250 random points per 

brightness interval at a minimum distance of ten feet apart. Each point was then visually 

identified as one of the four classes, positive, negative, false positive, false negative. 
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Figure 4.8 Accuracy Assessment Locations 1 

 

The brightness intervals show little variation between the percentage agreements, with a 

range of 67.20% to 71.20%. The small range is important because it demonstrates how 

the rule-set is able to successfully identify tiled fields throughout a complex image 

without sacrificing the accuracy of one interval for another.  The overall percentage 

agreement of all of the brightness intervals was 69.76%.  
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Table 4.2 Brightness Interval Agreement 1

 

 

The most common false positive error was classifying the edge of a field as tile (Figure 

4.9). The underestimation of tile was 12.72%, which was classified as false negative. The 

major reason for this error is the assumptions made by technicians when conducting the 

hand-digitized lines. Technicians connected tile lines across entire fields even if they are 

not visible to the naked eye. This is logical, because based on prior knowledge most 

fields exhibit a “natural” pattern. However, the rule-set is incapable of making these 

logical assumptions and can only classify an image object as tile if it falls within the 

specified parameters.  

 
Figure 4.9 Example of Edge Effects 1 

 

Brightness Interval Total Percent Agreement % Total Percent Error %

130 71.20% 28.80%

140 70% 30%

150 70.80% 29.20%

160 69.60% 30.40%

170 67.20% 32.80%

Average 69.76% 30.24%
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The data showed more variation when examining the kappa statistic (K) for each 

brightness interval independently shown in tables 4.3 through 4.9. The brightness interval 

with the least strength of agreement was 130, with a kappa value of 0.273 (Table 4.3). 

This brightness interval contains brightness values that border the vegetation interval and 

may explain the relatively low accuracy.  

 

Table 4.3 Confusion Matrix – Brightness Interval 130 1  

 

 

The brightness interval 140 revealed a sizable increase in accuracy from the previous 

brightness interval to a kappa value of 0.36 (Table 4.4). The strength of agreement is still 

only considered fair, but includes a much larger proportion of agricultural land than 

brightness interval 130.  

 

 

 

 

Tile Not-Tile Total Percentage

Tile 32 37 69 27.60%

Not-Tile 35 146 181 72.40%

Total 67 183 250

Percentage 26.80% 73.20% 71.20%

Kappa= 0.273

Fair

Strength of 

Agreement=

Hand Digitized

eCognition 

Brightness Interval 130
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Table 4.4 Confusion Matrix – Brightness 140 

 

 

The kappa statistic continues to improve in brightness interval 150, with a K value of 

0.416 and strength of agreement considered moderate (Table 4.5). This is the most 

accurate brightness interval with 177 of the 250 random points in agreement. This 

interval lies in the middle of the suggested range of brightness values, 140-160, for 

detecting tile drained agricultural fields.  

 

Table 4.5 Confusion Matrix – Brightness 150 1 

 

Tile Not-Tile Total Percentage

Tile 54 50 104 41.60%

Not-Tile 25 121 146 58.40%

Total 79 171 250

Percentage 31.60% 68.40% 70.00%

Kappa= 0.36

Fair

Hand Digitized

eCognition 

Strength of 

Agreement=

Brightness Interval 140

Tile Not-Tile Total Percentage

Tile 80 45 125 50.00%

Not-Tile 28 97 125 50.00%

Total 108 142 250

Percentage 43.20% 56.80% 70.80%

Kappa= 0.416

Moderate

Hand Digitized

eCognition 

Strength of 

Agreement=

Brightness Interval 150
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Brightness interval 160 displays a slight decrease in accuracy with a kappa value of 0.393 

and strength of agreement considered fair (Table 4.6). This interval seems to be at the 

high end of the range of brightness values most accurate for detecting tile as determined 

by this study.  

 

Table 4.6 Confusion Matrix – Brightness 160 

 

 

The last interval that exhibited any tiled image objects, brightness interval 170, starts to 

illustrate the potential threshold of brightness values to accurately detect tile (Table 4.7). 

Brightness interval 170 had a kappa value of 0.338 and fair strength of agreement. As 

noted earlier, any image object above this range, >170, was considered non-tile without 

any extra investigation.  

 

 

 

Tile Not-Tile Total Percentage

Tile 79 47 126 50.40%

Not-Tile 29 95 124 49.60%

Total 108 142 250

Percentage 43.20% 56.80% 69.60%

Kappa= 0.393

Fair

Brightness Interval 160

Hand Digitized

eCognition 

Strength of 

Agreement=
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Table 4.7 Confusion Matrix – Brightness 170 

 

 

The final table is the overall accuracy of the study area, which is the aggregate of all 

brightness intervals (Table 4.8). The total number of correctly identified random points 

was 872 out of 1250, which resulted in a kappa statistic of 0.382 and the strength of 

agreement was considered fair.  

 

Table 4.8 Confusion Matrix – Study Area 1 

 

 

Tile Not-Tile Total Percentage

Tile 96 40 136 54.40%

Not-Tile 42 72 114 45.60%

Total 138 112 250

Percentage 55.20% 44.80% 67.20%

Kappa= 0.338

Fair

Brightness Interval 170

Hand Digitized

eCognition 

Strength of 

Agreement=

Tile Not-Tile Total Percentage

Tile 341 219 560 44.80%

Not-Tile 159 531 690 55.20%

Total 500 750 1250

Percentage 40.00% 60.00% 69.76%

Kappa= 0.382

Fair

Study Area

Hand Digitized

eCognition 

Strength of 

Agreement=
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Table 4.9 illustrates the total agreement percentage and total error percentage for each 

brightness interval. The overall accuracy for each brightness interval is nearly identical, 

with the range of percent agreement from 67.20%, in interval 170, to 71.20% in interval 

130. The average agreement for the entire study area is 69.76%. The overestimation of 

tile for the entire study area was 17.52%, classified as false positive, and was the result of 

many areas within image objects with very high contrasts between edges not caused by 

tile.  

Table 4.9 Tile Verification 1

 

 

For the complexity of the data utilized and the relatively simple methodology applied 

these results are attractive, because they represent a robust and transferable rule-set. 

Similar results have been acquired with field-sized study areas and more complicated 

rule-sets.  Previous attempts required the rule-sets to be manipulated in order to be 

transferable to different study areas. 

 

 

 

 

 

Brightness 

Interval
Positive

Percent 

Positive %
Negative 

Percent 

Negative % 
False Positive

Percent False 

Positive %
False Negative 

Percent False 

Negative %
Total 

130 32 12.80% 146 58.40% 37 14.80% 35 14.00% 250

140 54 21.60% 121 48.40% 50 20.00% 25 10.00% 250

150 80 32.00% 97 38.80% 45 18.00% 28 11.20% 250

160 79 31.60% 95 38.00% 47 18.80% 29 11.60% 250

170 96 38.40% 72 28.80% 40 16.00% 42 16.80% 250

Average 68.2 27.28% 106.2 42.48% 43.8 17.52% 31.8 12.72%

Tile Verification 
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Chapter 5 

 

5 Conclusions 

 

Overall, this research provided a major step forward in the ability to identify and extract 

tile drains; generating a total percent agreement of 69.76% with a fair ranking kappa 

statistic of 0.382. The results were grouped into two separate processes, image object 

identification and tile verification, which combined, produced the final results. The first 

process was the image object identification, which automatically characterized large 

homogeneous areas based on their associated brightness interval. One issue that was 

encountered during this research was the error propagation caused by vegetation. This 

research used techniques that worked well on bare soil only, and as a result any area with 

vegetation, or a brightness value under 130, was considered Non-Tile. One possible 

solution is to use multi-temporal imagery and run the rule-set images that were collected 

during different growing seasons. However, this technique was unable to be employed in 

this study. This limitation is acknowledged and further research must be done to 

investigate identifying tiled fields with vegetation cover or low brightness values. 

It is concluded that the majority of the tiled image objects fall within the brightness range 

of 140-160. This insight into the spectral properties of agricultural fields is important for 

large scale projects, where processing time and computing power are limited. Using this 

range of values would allow for the most effective route in order to identify agricultural 
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fields. Another conclusion drawn from this study is that the brightness value of 180 or 

greater is considered a threshold for agricultural fields. This means all fields above this 

threshold may be considered Non-Tile without any further segmentation or classification. 

However, this has not been tested on other study areas and should only be used as a 

guideline.  

The tile verification process re-segmented each brightness interval into a series of much 

smaller image objects and then reclassified each image object as Tile or Non-Tile. A 

critical step was applying the image filters, Histogram and Convolution, on the small 

image objects. The combination of these sets of image filters provided the means 

necessary to enhance the pertinent contrasts between image objects plus smooth out the 

erroneous noise. Without these two filters, this methodology would have created 

negligible results, because the variations between image objects without these filters are 

too vast for the algorithms to produce accurate results at the scale studied. 

After a lengthy series of test trials with various combinations of algorithms and 

parameters, it was decided to only apply the two most effective algorithms. The two 

algorithms, Border Contrast and Contrast to Neighbor Pixels, were determined to be the 

most efficient in detecting the contrast between soil brightness values that are indicative 

of tiled fields. The final rule-set was excellent at identifying small contrasts in soil, and 

even some undetectable to the human eye.  

These results demonstrated a fair strength of agreement, which is acceptable for the 

experimental nature of this study. However, there are areas where improvements are 

needed. The main sources of error are caused by the rule-set’s inability to distinguish 
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between different types of soil contrasts. For example, the contrasts between the edge of a 

field and cropped areas, called edge effect, are nearly identical to the contrast between the 

tiled portion and non-tiled portion within a field. This same error may also occur when 

crop rows are visible, which exhibit similar patterns as tile lines. Additional parameters 

added to the rule-set may be necessary to mitigate these errors, but might dramatically 

increase the processing time. An unforeseen limitation of this research was the inability 

to convert the final output into useable polylines. Polylines would have allowed for a 

more direct comparison to the hand-digitized lines, which would have likely been more 

accurate.  

However, the most important aspect of this rule-set is that it holds true throughout the 

study area, and no modifications are needed to be made to the rule-set for any individual 

field. This thesis provides a method to extract the density and extent of tiled fields with 

much less effort and user-time required. Ultimately, this thesis provides the means in 

which others will be able to model nutrient transport through subsurface tile drainage 

over larger areas more effectively and efficiently.   
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Chapter 6 

 

6 Future Research 

 

Throughout this thesis there were a few key issues that arose, which would benefit 

greatly with further investigation. The first issue is the software eCognition itself, which 

has a steep learning curve. New editions of eCognition such as version 9, may be more 

user friendly and may be accompanied with new algorithms that would greatly benefit 

future research. Version 9 is available now, but was unavailable at the time this research 

was conducted. Further study is needed to comprehensively experiment with all 

algorithms, parameters, and image filtering techniques.   

More investigation is needed to expand the work accomplished by this thesis, with 

special focus on refining the brightness intervals. The brightness intervals for this study 

were only guidelines based upon using intervals of ten. Much can be learned from 

determining the exact brightness ranges that are produced by agricultural fields.  

The availability of the imagery is still a major concern because the ideal conditions 

needed for tile identification are rare. This issue is likely to be solved in the near future 

with the advancements in remote sensing techniques and decreasing cost. Another avenue 

that should be investigated is the use of unmanned aerial vehicles (UAVs), or drones, to 

collect accurate high-resolution imagery taken under the conditions of the user’s 
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choosing. Finally, alternate sensors that utilize wavelengths outside of the visible or near 

infrared should be applied in order to investigate their effectiveness. 
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