Agronomic Uses of Manure that Reduce Environmental Risk

Greg LaBarge, Field Specialist, Agronomic Systems
Glen Arnold, Field Specialist, Manure Management
Ohio State University Extension

Question to answer:

- Do 4R Nutrient Stewardship principals apply to Manure Management?
- Is manure only "insurance" nutrients or a "primary nutrient source" that replace purchased fertilizer?
- Can manure sourced Nitrogen be better utilized and Phosphorus Balanced in a crop rotation?
- What effects to water quality could happen?

How are the 4R's being adopted into Manure Sourced Nutrients

What are the 4Rs

RIGHT SOURCE

Matches fertilizer type to crop needs.

Primary nutrient source P & K, also N

Makes economic & environmental sense...

RIGHT RATE

Matches amount of fertilizer type crop needs.

Rates limited to 2-year (in some situations 3 year) crop rotations P needs

Using technology to monitor and or VRT rate

RIGHT TIME

Makes nutrients available when crops needs them.

Apply in growing cash crop

Apply into established forage/cover crop

RIGHT PLACE

Keep nutrients where crops can use them.

Use manure application to establish cover crop seeding

Manure Incorporation

CFAES

Manure Supplied Nutrients Compared to 2-year removal

Corn - 180 bu/ac & Soybeans - 60 bu/acre

	2-Year Grain Removal	Swine*	Dairy*	Poultry*	
Nutrient	(pounds/ac)	5500 gallon/ac	13000 gallon/ac	2 ton/ac	
N	133	=	-	-	
Р	111	=	-	-	
K	104	=	+	_	ore than
Ca	24	+	+	= Me + - Les	sets ss than
Mg	17	+	+	-	
S	20	=	=	-	
В	0.19	=	-	nd	
Cu	0.07	+	+	=	
Fe	0.56	+	+	+	
Mn	0.14	+	+	-	
Zn	0.32	-	+	=	

^{*} Based on a single operation's test values. Recommend each operation establish history of manure test results

 ${\it of}$ FOOD, AGRICULTURAL, ${\it and}$ ENVIRONMENTAL SCIENCES

In Season Application Utilizes Nitrogen

Corn N Requirement-190 lbs. Ac \$68.25 @ \$0.35 N

Wheat
N Requirement-115 lbs. Ac
\$40.25 @ \$0.35 N
OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SO

Sidedressing Manure on Corn - Economic Incentive to Use this Practice

	Treatment	Cost	Yield Increase	Net Over UAN
Partial Budget		\$75		
Nitrogen Cost	Swine (5500 gal)	\$55*	\$84	\$104
	Dairy (13,600) + 70 UAN	\$160 (\$136* + \$24)	\$84	-\$1

* Cost of application @ \$0.01/gallon

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCES

Edge of Field Monitoring In-Crop Manure vs Standard Practice

North Field Treatment

28% UAN applied on June 5

- 172 pounds of N per acre
- 0 pounds per acre P₂O₅

South Field Treatment

Swine manure on June 1 @ 6000 gallons/acre

- 172 pounds available N per acre
- 120 pounds per acre P₂O₅

Soil Test Results 6/24/2020 20 Days after nutrient application

- Sample Core Depth of 0-12 inch
- Eleven cores composited across the row
- Timing
 - 19 days after manure
 - 23 days after UAN

Resu	lts
------	-----

Treatment	Nitrate (PPM)	Ammonium (PPM)	Total N NO ₃ + NH ₄	P (PPM)	OM (%)
28%	21	15	36	32	3.3
Manure	32	7	39	38	3.4

STP values of N and P identical after nutrient application

Normalized Difference Red Edge (NDRE) Index of Plant Health

	NDRE	Stand
Treatment	Index	Count
28%	0.60	28,500
Manure	0.63	31,000

- South field appears healthier common comment by farmers.
- South field corn is planted diagonally to reduce equipment/labor cost recent adaptation

Estimated Yield on 8/26/2020

Treatment	Yield Bu/A
28%	132
Manure	185
	+53

Use of Practice/Adoption Barriers to be Overcome

* 2019 Weather Hindered Planting and Manure Applications

- Application window based on crop growth stage
- Equipment availability
 - Applicators
 - Transport
- Weather Window
- Farmer confidence

Manure Compared to Commercial Fertilizer over a Crop Rotation

2016 Soil Test P 53 PPM

2019-September

- Applied Swine Finishing Manure
- Planted to Cereal Rye/Rape Seed

2020-May

- North Field-Corn
- South Field-Soybeans

Swine Manure Applied on 9/15/2019

Corn

Soybean

Soil Test Results in Spring after Fall Applied Manure

Soil Sample (0-8 inch) Taken 5/6/2020.

	Treatment		
Soil Test	No		
Parameter	Manure	Manure	
рН	5.4	5.3	
Organic Matter(%)	4.3	4.3	
NO3-N (ppm)	7	7	
NH4-N (ppm)	4	5	
P* (ppm)	57	56	
S* (ppm)	8	8	

Cover crop- Rye/Rape Seed Planted

Cover Crop Growth on 5/6/2020.

Manure	% Ground
Applied	Cover
Yes	70 a
No	42 b
LSD (0.01)	21
C.V. %	20

80% Cover

40% Cover

Cover Crop with Manure at 2 Rates

Treatments

- 7,000 and 14,000 gallons per acre applied August 1
- Cover crop species
 White Mustard

Results:

- tile flow (-35%)
- Nitrates (-74%)
- DRP (-33%)

Note: DRP reductions from CC are not consistent across literature.

Full 2018 WY 10/2017 to 9/2018

Summary

- Farmers knowledge/confidence of using manure as a primary nutrient source for P & K is common.
- Knowledge/confidence to better utilize N as a primary nutrient source increasing.
- Practices of:
 - Cover crop after summer manure application
 - In crop applications to corn and wheat are increasing
- Economics are driving innovation in planting and application equipment improvements.
- All leading to 4R Nutrient Stewardship in use of manure sourced nutrients.
- Water Quality impacts:
 - Manure and fertilizers applied at the same rate have an equal impact
 - Cover crops reduce N losses, for P there is variable results
 - In crop applications of manure reduces overall applied N in environment

Contacts

- Greg LaBarge labarge.1@osu.edu
- Glen Arnold <u>arnold.2@osu.edu</u>