

Maumee River nutrient loading March 1 – July 31, 2020

Maumee River in Waterville

- One of 28 stations in the Maumee Watershed sampled in collaboration with other agencies
- One of 24 stations across
 Ohio and in Michigan as part of the Heidelberg Tributary
 Loading Program
- Samples are collected 3x a day*, year-round and retrieved weekly for analysis in the laboratory
- Sampled since 1975 for all major nutrients and sediments (45 years!!)

https://lakeerie.ohio.gov/Portal s/0/Expanded_load_monitoring _report_2019-10-31.pdf

National

Center for

Total bioavailable P is the portion of P available to algae that doesn't settle between Waterville and the lake

TBP = DRP + 0.08*(TPP)

Total Bioavailable P

Dissolved Reactive P

Total Particulate P

Total bioavailable phosphorus at the Maumee River in Waterville *March 1 - July 1, 2020*

projected to July 31 with data from the NWS Ohio River Forecast Center

Maumee River in Waterville March-July streamflow discharge volume

Currently \rightarrow 2.87 km³ (or 766 billion gallons) Projected \rightarrow 2.94 km³ (or 785 billion gallons)

Maumee River in Waterville March-July loads

Total Particulate Phosphorus

Currently →1360 metric tons
Projected →1366 metric tons

Maumee River in Waterville March-July loads

Total Particulate Phosphorus

Dissolved Reactive Phosphorus

Currently →216 metric tons
Projected →218 metric tons

Maumee River in Waterville March-July flow-weighted mean concentrations

Load/streamflow = FWMC

5 year running average

Concentration Target

Currently → 0.075 mg/L

Both loads (and FWMC) are correlated with streamflow (2002-2018) What load would we expect based on streamflow?

Dissolved Reactive Phosphorus

- Higher than normal
- 2. Below the target
- 3. Below the concentration target, but not the load target
- 4. Lower than normal (e.g., 2019)
- 5. As expected (in normal range)

Both loads and FWMC are correlated with streamflow (2002-2018)

Dissolved Reactive Phosphorus

2020 expected → 230 metric tons

(between 130 and 330 metric tons)

2020 observed → 216 metric tons

TPP is higher than expected based on streamflow

Dissolved Reactive Phosphorus

2020 expected → 230 metric tons 2020 observed → 216 metric tons

2020 expected → 832 metric tons
(between 502 and 1162)
2020 observed → 1360 metric tons

Conclusions

- Streamflow discharge was ~average (2.94 km³) this year compared to 2002-2018 (3.2 km³), though lower than the current 5 year running average
- DRP loads were lower than the 5 year running average, but very similar to 2018 and within the normal range based on 2002-2018
- TPP loads were higher than the 5 year running average, and higher than expected based on 2002-2018
- Since 2002, P loads have had unique years where loads are lower or higher than expected, but there are no detectable downward trends

Thanks!

Laura T. Johnson
Director
National Center for Water Quality Research
Heidelberg University
310 E. Market Street
Tiffin, OH 44883
Ijohnson@heidelberg.edu
419.448.2056
http://www.ncwqr.org

https://www.facebook.com/ncwqr http://www.LakeErieAlgae.com https://www.blueaccounting.org/issue/eriestat

